vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0850
- Accuracy: 0.7195
- Precision: 0.7506
- Recall: 0.7195
- F1: 0.7206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2033 | 0.3333 | 100 | 1.2261 | 0.6361 | 0.6932 | 0.6361 | 0.6400 |
0.0929 | 0.6667 | 200 | 1.0850 | 0.7195 | 0.7506 | 0.7195 | 0.7206 |
0.0625 | 1.0 | 300 | 1.3736 | 0.6909 | 0.7185 | 0.6909 | 0.6945 |
0.1293 | 1.3333 | 400 | 1.6858 | 0.6819 | 0.7413 | 0.6819 | 0.6573 |
0.0786 | 1.6667 | 500 | 1.6693 | 0.6746 | 0.7054 | 0.6746 | 0.6852 |
0.0769 | 2.0 | 600 | 1.2500 | 0.7653 | 0.7741 | 0.7653 | 0.7659 |
0.0675 | 2.3333 | 700 | 1.2728 | 0.7277 | 0.7905 | 0.7277 | 0.7006 |
0.0577 | 2.6667 | 800 | 1.7467 | 0.6942 | 0.7236 | 0.6942 | 0.7024 |
0.1206 | 3.0 | 900 | 1.9383 | 0.7105 | 0.7649 | 0.7105 | 0.6852 |
0.0516 | 3.3333 | 1000 | 1.6047 | 0.6999 | 0.6905 | 0.6999 | 0.6914 |
0.0235 | 3.6667 | 1100 | 1.2994 | 0.7686 | 0.7826 | 0.7686 | 0.7676 |
0.0016 | 4.0 | 1200 | 1.5717 | 0.7424 | 0.7565 | 0.7424 | 0.7443 |
0.0015 | 4.3333 | 1300 | 1.4555 | 0.7809 | 0.7935 | 0.7809 | 0.7757 |
0.0276 | 4.6667 | 1400 | 1.2971 | 0.7751 | 0.7664 | 0.7751 | 0.7679 |
0.0132 | 5.0 | 1500 | 1.6617 | 0.7555 | 0.7683 | 0.7555 | 0.7538 |
0.0015 | 5.3333 | 1600 | 1.5638 | 0.7383 | 0.7585 | 0.7383 | 0.7419 |
0.0009 | 5.6667 | 1700 | 1.8707 | 0.7383 | 0.7490 | 0.7383 | 0.7428 |
0.0008 | 6.0 | 1800 | 1.8055 | 0.7539 | 0.7631 | 0.7539 | 0.7570 |
0.0008 | 6.3333 | 1900 | 1.9551 | 0.7294 | 0.7480 | 0.7294 | 0.7338 |
0.0006 | 6.6667 | 2000 | 1.9497 | 0.7318 | 0.7496 | 0.7318 | 0.7361 |
0.0007 | 7.0 | 2100 | 1.9260 | 0.7343 | 0.7472 | 0.7343 | 0.7380 |
0.0006 | 7.3333 | 2200 | 1.9289 | 0.7326 | 0.7452 | 0.7326 | 0.7360 |
0.0024 | 7.6667 | 2300 | 1.8358 | 0.7261 | 0.7435 | 0.7261 | 0.7333 |
0.0005 | 8.0 | 2400 | 1.9143 | 0.7302 | 0.7482 | 0.7302 | 0.7359 |
0.0004 | 8.3333 | 2500 | 1.9815 | 0.7220 | 0.7419 | 0.7220 | 0.7279 |
0.0181 | 8.6667 | 2600 | 2.2374 | 0.6926 | 0.7291 | 0.6926 | 0.6944 |
0.0004 | 9.0 | 2700 | 1.9174 | 0.7482 | 0.7919 | 0.7482 | 0.7498 |
0.0004 | 9.3333 | 2800 | 1.9026 | 0.7473 | 0.7795 | 0.7473 | 0.7529 |
0.0003 | 9.6667 | 2900 | 1.9087 | 0.7522 | 0.7823 | 0.7522 | 0.7575 |
0.0004 | 10.0 | 3000 | 1.9171 | 0.7514 | 0.7817 | 0.7514 | 0.7567 |
0.0003 | 10.3333 | 3100 | 1.9246 | 0.7539 | 0.7839 | 0.7539 | 0.7591 |
0.0003 | 10.6667 | 3200 | 1.9318 | 0.7539 | 0.7839 | 0.7539 | 0.7591 |
0.0003 | 11.0 | 3300 | 1.9402 | 0.7506 | 0.7795 | 0.7506 | 0.7562 |
0.0002 | 11.3333 | 3400 | 1.9475 | 0.7506 | 0.7784 | 0.7506 | 0.7560 |
0.0003 | 11.6667 | 3500 | 1.9540 | 0.7522 | 0.7792 | 0.7522 | 0.7574 |
0.0003 | 12.0 | 3600 | 1.9608 | 0.7522 | 0.7792 | 0.7522 | 0.7574 |
0.0003 | 12.3333 | 3700 | 1.9678 | 0.7506 | 0.7765 | 0.7506 | 0.7559 |
0.0002 | 12.6667 | 3800 | 1.9732 | 0.7514 | 0.7771 | 0.7514 | 0.7567 |
0.0002 | 13.0 | 3900 | 1.9782 | 0.7522 | 0.7773 | 0.7522 | 0.7574 |
0.0002 | 13.3333 | 4000 | 1.9827 | 0.7514 | 0.7763 | 0.7514 | 0.7566 |
0.0002 | 13.6667 | 4100 | 1.9861 | 0.7514 | 0.7759 | 0.7514 | 0.7567 |
0.0002 | 14.0 | 4200 | 1.9894 | 0.7506 | 0.7749 | 0.7506 | 0.7560 |
0.0002 | 14.3333 | 4300 | 1.9920 | 0.7506 | 0.7749 | 0.7506 | 0.7560 |
0.0002 | 14.6667 | 4400 | 1.9933 | 0.7498 | 0.7739 | 0.7498 | 0.7552 |
0.0002 | 15.0 | 4500 | 1.9939 | 0.7498 | 0.7739 | 0.7498 | 0.7552 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.720
- Precision on imagefoldertest set self-reported0.751
- Recall on imagefoldertest set self-reported0.720
- F1 on imagefoldertest set self-reported0.721