|
# MobileNet v2 1.0 224 INT8 |
|
|
|
## Description |
|
INT8 quantised version of MobileNet v2 model. Trained on ImageNet. |
|
|
|
## License |
|
[Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) |
|
|
|
## Related Materials |
|
### Class Labels |
|
The class labels associated with this model can be downloaded by running the script `get_class_labels.sh`. |
|
|
|
### Model Recreation Code |
|
Code to recreate this model can be found [here](recreate_model/). |
|
|
|
## Network Information |
|
| Network Information | Value | |
|
|---------------------|----------------| |
|
| Framework | TensorFlow Lite | |
|
| SHA-1 Hash | 8de7996dfeadb5ab6f09e3114f3905fd03879eee | |
|
| Size (Bytes) | 4020936 | |
|
| Provenance | https://arxiv.org/pdf/1801.04381.pdf | |
|
| Paper | https://arxiv.org/pdf/1801.04381.pdf | |
|
|
|
## Performance |
|
| Platform | Optimized | |
|
|----------|:---------:| |
|
| Cortex-A |:heavy_check_mark: | |
|
| Cortex-M |:heavy_check_mark: | |
|
| Mali GPU |:heavy_check_mark: | |
|
| Ethos U |:heavy_check_mark: | |
|
|
|
### Key |
|
* :heavy_check_mark: - Will run on this platform. |
|
* :heavy_multiplication_x: - Will not run on this platform. |
|
|
|
## Accuracy |
|
Dataset: ILSVRC 2012 |
|
|
|
| Metric | Value | |
|
|--------|-------| |
|
| Top 1 Accuracy | 0.697 | |
|
|
|
## Optimizations |
|
| Optimization | Value | |
|
|--------------|---------| |
|
| Quantization | INT8 | |
|
|
|
## Network Inputs |
|
<table> |
|
<tr> |
|
<th width="200">Input Node Name</th> |
|
<th width="100">Shape</th> |
|
<th width="300">Description</th> |
|
</tr> |
|
<tr> |
|
<td>tfl.quantize</td> |
|
<td>(1, 224, 224, 3)</td> |
|
<td>Single 224x224 RGB image with INT8 values between -128 and 127</td> |
|
</tr> |
|
</table> |
|
|
|
## Network Outputs |
|
<table> |
|
<tr> |
|
<th width="200">Output Node Name</th> |
|
<th width="100">Shape</th> |
|
<th width="300">Description</th> |
|
</tr> |
|
<tr> |
|
<td>MobilenetV2/Predictions/Reshape_11</td> |
|
<td>(1, 1001)</td> |
|
<td>Per-class confidence for 1001 ImageNet classes</td> |
|
</tr> |
|
</table> |
|
|