I like to train large deep neural nets too 🧠🤖💥 | First Paper (AutoAgents: A Framework for Automatic Agent Generation) Accepted @ IJCAI 2024 | Role Model Karpathy
I updated the LLM Scientist roadmap and added a ton of new information and references. It covers training, datasets, evaluation, quantization, and new trends like test-time compute scaling.
The LLM Course has been incredibly popular (41.3k stars!) and I've been touched to receive many, many messages about how it helped people in their careers.
I know how difficult this stuff can be, so I'm super proud of the impact it had. I want to keep updating it in 2025, especially with the LLM Engineer roadmap.
minimal single script implementation of knowledge distillation in LLMs. In this implementation, we use GPT-2 (124M) as student model and GPT-2 Medium (340M) as teacher via reverse Kullback-Leibler (KL) divergence, trained on a small chunk of openwebtext.
damn I love nvidia's bullish stance on taking AI to the edge - from being the overlord of compute to cutting-edge physical AI with SOTA multiverse simulation engines that brings the scaling laws under your control!!
My favorite: Cosmos - fully opensourced, open-weight physics based video gen platform, what an incredible way to start off the year✨
nanoBLT: Simplified lightweight implementation of a character-level Byte Latent Transformer model (under 500 lines of code). The model is 2x4x2 (n_layers_encoder, n_layers_latent, n_layers_decoder) layer deep trained on ~1M bytes of tiny Shakespeare with a patch size of 4.
Implements from first-principle a discrete flow matching model for code generation- trained a small sized 2D dfm model on two variations of code for binary search. The result was amazing, code in comment: Code: https://github.com/Jaykef/ai-algorithms/blob/main/dfm.ipynb
In Honour of This Year's NeurIPs Test of Time Paper Awardees This year's NIPs Test of Time Paper Awards went to two groundbreaking papers: 1. Generative Adversarial Nets (Goodfellow et al) 2. Sequence to Sequence Learning with Neural Networks (Ilya et al) Let's explore how these papers helped pioneered breakthroughs in today's AI:
Lightweight implementation of the seminal paper “Sequence to Sequence Learning with Neural Networks”
Built, trained and eval a 2 layer deep seq2seq LSTM-based model (~10M params) on German-English corpus of Multi30K dataset. In honor of ilya sutskever et al for winning this year’s NeurIPSConf Test of Time paper award 🫡
Rethinking Backpropagation: Thoughts on What's Wrong with Backpropagation
As a young researcher, I've often pondered the limitations of backpropagation, especially when mapped with how learning occurs in the human brain. While backpropagation has been the workhorse of deep learning, it isn't without flaws. In this post, I aim to share some thoughts on these shortcomings from first principles.
Implements compute-efficient DeepPCR algorithm which parallelizes sequential operations thus speeding up inference and training of neural networks. DeepPCR can significantly reduce the time complexity in operations such as denoising in latent diffusion space from O(L) to O(log2 L).