2025-06-01_23-21-32
This model is a fine-tuned version of nvidia/mit-b0 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.1614
- Mean Iou: 0.5176
- Mean Accuracy: 0.8876
- Overall Accuracy: 0.9743
- Per Category Iou: [0.9742468410406894, 0.06089158226797277]
- Per Category Accuracy: [0.9746525149724692, 0.8004728992360859]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.6021 | 3.3333 | 20 | 0.5909 | 0.4687 | 0.8817 | 0.9168 | [0.9166466186982658, 0.020747239422429665] | [0.9169402794152367, 0.8464896325936704] |
0.483 | 6.6667 | 40 | 0.4743 | 0.4702 | 0.8926 | 0.9188 | [0.9187025683078979, 0.02174875913808613] | [0.9189588772375197, 0.8663150236449618] |
0.4137 | 10.0 | 60 | 0.3513 | 0.4922 | 0.8785 | 0.9513 | [0.9512098322489387, 0.03328872784134478] | [0.951596165043716, 0.8053837759185158] |
0.3383 | 13.3333 | 80 | 0.2649 | 0.5071 | 0.8518 | 0.9683 | [0.9682495182020971, 0.04604880717631906] | [0.9687853719602414, 0.7348126591487814] |
0.2816 | 16.6667 | 100 | 0.2483 | 0.5149 | 0.8465 | 0.9745 | [0.974434504920804, 0.05532738053519113] | [0.9750081799140786, 0.7178974172426337] |
0.2936 | 20.0 | 120 | 0.2346 | 0.5096 | 0.8790 | 0.9690 | [0.9689592451845151, 0.05033140256996599] | [0.9693866241133998, 0.7886504183339396] |
0.2461 | 23.3333 | 140 | 0.1998 | 0.5145 | 0.8673 | 0.9732 | [0.9731369716247265, 0.0557941058807841] | [0.9736223392504542, 0.7610040014550745] |
0.2397 | 26.6667 | 160 | 0.1990 | 0.5092 | 0.8959 | 0.9679 | [0.9677955220165496, 0.050647636518198695] | [0.968151855644824, 0.8235722080756639] |
0.219 | 30.0 | 180 | 0.1780 | 0.5142 | 0.8876 | 0.9720 | [0.9719682833343325, 0.056377244744169414] | [0.9723682122845229, 0.8028373954165151] |
0.1903 | 33.3333 | 200 | 0.2008 | 0.5094 | 0.9029 | 0.9677 | [0.9676405121966583, 0.051242685179004516] | [0.9679681397091366, 0.8377591851582393] |
0.204 | 36.6667 | 220 | 0.1632 | 0.5199 | 0.8697 | 0.9765 | [0.9764641430635311, 0.06329649091018905] | [0.9769482050118011, 0.7624590760276464] |
0.27 | 40.0 | 240 | 0.1662 | 0.5158 | 0.8880 | 0.9731 | [0.9730663517970184, 0.05851614101169792] | [0.9734674712716104, 0.8024736267733721] |
0.1853 | 43.3333 | 260 | 0.1612 | 0.5195 | 0.8778 | 0.9759 | [0.9758665197616132, 0.06309928858645221] | [0.9763162070099016, 0.7791924336122227] |
0.2103 | 46.6667 | 280 | 0.1644 | 0.5161 | 0.8921 | 0.9731 | [0.9730533605611293, 0.05906435072936126] | [0.9734374845796283, 0.8108403055656602] |
0.2376 | 50.0 | 300 | 0.1614 | 0.5176 | 0.8876 | 0.9743 | [0.9742468410406894, 0.06089158226797277] | [0.9746525149724692, 0.8004728992360859] |
Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 210
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Jedrzej-Smok/2025-06-01_23-21-32
Base model
nvidia/mit-b0