See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-7B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Jennny/strict_mc_label
conversation: qwen-7b-chat
type: sharegpt
split: "train"
train_on_split: "train"
warmup_ratio: 0.05
val_set_size: 0.0
output_dir: ./prm
wandb_project: preference-models
# wandb_entity: domain-generalization
wandb_watch:
wandb_name: "qwen-7b-bs32_lr2e-6_prm"
wandb_log_model:
train_on_inputs: false
save_safetensors: true
#noisy_embedding_alpha: 10.0 # default for sharegpt type
dataset_prepared_path: ~/data/preference-models/last_run_prepared
dataset_processes: 48
#torch_compile: true
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
trust_remote_code: True
adapter:
lora_model_dir:
#lora_r: 32
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_linear: true
#lora_fan_in_fan_out:
gradient_checkpointing: True
#warmup_ratio: 0.1
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
#max_steps: 10
#optimizer: adamw_torch_fused
optimizer: paged_adamw_32bit
#lr_scheduler: constant_with_warmup
lr_scheduler: cosine
learning_rate: 2.0e-6
weight_decay: 0.0
max_grad_norm: 1.0
group_by_length: false
bf16: auto
fp16: false
tf32: true
early_stopping_patience:
local_rank:
logging_steps: 2
xformers_attention:
flash_attention: true
eval_steps:
eval_table_size:
eval_table_max_new_tokens:
#save_steps: 100
save_strategy: "epoch"
save_total_limit: 4
#save_safetensors: false
debug:
ddp: #true
deepspeed: #deepspeed/zero1.json # multi-gpu only
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
prm
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0296 | 1 | 3.5810 |
3.6289 | 0.0593 | 2 | 2.9033 |
3.6289 | 0.0889 | 3 | 1.3921 |
2.1197 | 0.1185 | 4 | 0.4445 |
2.1197 | 0.1481 | 5 | 0.2438 |
0.3612 | 0.1778 | 6 | 0.1210 |
0.3612 | 0.2074 | 7 | 0.0613 |
0.0928 | 0.2370 | 8 | 0.1151 |
0.0928 | 0.2667 | 9 | 0.0640 |
0.0827 | 0.2963 | 10 | 0.0762 |
0.0827 | 0.3259 | 11 | 0.0631 |
0.0682 | 0.3556 | 12 | 0.0576 |
0.0682 | 0.3852 | 13 | 0.0564 |
0.0509 | 0.4148 | 14 | 0.0546 |
0.0509 | 0.4444 | 15 | 0.0559 |
0.0579 | 0.4741 | 16 | 0.0539 |
0.0579 | 0.5037 | 17 | 0.0511 |
0.0509 | 0.5333 | 18 | 0.0535 |
0.0509 | 0.5630 | 19 | 0.0516 |
0.0495 | 0.5926 | 20 | 0.0504 |
0.0495 | 0.6222 | 21 | 0.0556 |
0.0509 | 0.6519 | 22 | 0.0559 |
0.0509 | 0.6815 | 23 | 0.0541 |
0.0995 | 0.7111 | 24 | 0.0495 |
0.0995 | 0.7407 | 25 | 0.0500 |
0.0473 | 0.7704 | 26 | 0.0502 |
0.0473 | 0.8 | 27 | 0.0503 |
0.0486 | 0.8296 | 28 | 0.0494 |
0.0486 | 0.8593 | 29 | 0.0492 |
0.0502 | 0.8889 | 30 | 0.0488 |
0.0502 | 0.9185 | 31 | 0.0493 |
0.071 | 0.9481 | 32 | 0.0483 |
0.071 | 0.9778 | 33 | 0.0477 |
0.0467 | 1.0074 | 34 | 0.0485 |
0.0467 | 1.0148 | 35 | 0.0492 |
0.0439 | 1.0444 | 36 | 0.0489 |
0.0439 | 1.0741 | 37 | 0.0483 |
0.0407 | 1.1037 | 38 | 0.0476 |
0.0407 | 1.1333 | 39 | 0.0468 |
0.0464 | 1.1630 | 40 | 0.0464 |
0.0464 | 1.1926 | 41 | 0.0460 |
0.0434 | 1.2222 | 42 | 0.0460 |
0.0434 | 1.2519 | 43 | 0.0465 |
0.0455 | 1.2815 | 44 | 0.0463 |
0.0455 | 1.3111 | 45 | 0.0461 |
0.048 | 1.3407 | 46 | 0.0460 |
0.048 | 1.3704 | 47 | 0.0459 |
0.0446 | 1.4 | 48 | 0.0458 |
0.0446 | 1.4296 | 49 | 0.0456 |
0.0481 | 1.4593 | 50 | 0.0457 |
0.0481 | 1.4889 | 51 | 0.0456 |
0.0432 | 1.5185 | 52 | 0.0456 |
0.0432 | 1.5481 | 53 | 0.0456 |
0.0416 | 1.5778 | 54 | 0.0456 |
0.0416 | 1.6074 | 55 | 0.0456 |
0.0424 | 1.6370 | 56 | 0.0455 |
0.0424 | 1.6667 | 57 | 0.0455 |
0.044 | 1.6963 | 58 | 0.0456 |
0.044 | 1.7259 | 59 | 0.0455 |
0.0422 | 1.7556 | 60 | 0.0455 |
0.0422 | 1.7852 | 61 | 0.0455 |
0.0419 | 1.8148 | 62 | 0.0455 |
0.0419 | 1.8444 | 63 | 0.0455 |
0.0431 | 1.8741 | 64 | 0.0455 |
0.0431 | 1.9037 | 65 | 0.0456 |
0.0396 | 1.9333 | 66 | 0.0455 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 129
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support