|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: roberta-base-stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.907904999413384 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-stsb |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4155 |
|
- Pearson: 0.9101 |
|
- Spearmanr: 0.9079 |
|
- Combined Score: 0.9090 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| No log | 1.0 | 360 | 0.6202 | 0.8787 | 0.8813 | 0.8800 | |
|
| 1.6425 | 2.0 | 720 | 0.4864 | 0.9008 | 0.8992 | 0.9000 | |
|
| 0.3629 | 3.0 | 1080 | 0.4201 | 0.9043 | 0.9016 | 0.9030 | |
|
| 0.3629 | 4.0 | 1440 | 0.4686 | 0.9052 | 0.9003 | 0.9027 | |
|
| 0.2212 | 5.0 | 1800 | 0.4622 | 0.9061 | 0.9031 | 0.9046 | |
|
| 0.1556 | 6.0 | 2160 | 0.3952 | 0.9086 | 0.9065 | 0.9075 | |
|
| 0.1162 | 7.0 | 2520 | 0.4271 | 0.9081 | 0.9070 | 0.9075 | |
|
| 0.1162 | 8.0 | 2880 | 0.4169 | 0.9094 | 0.9075 | 0.9085 | |
|
| 0.0887 | 9.0 | 3240 | 0.4383 | 0.9091 | 0.9074 | 0.9083 | |
|
| 0.0717 | 10.0 | 3600 | 0.4155 | 0.9101 | 0.9079 | 0.9090 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|