Jgmorenof's picture
Add new SparseEncoder model
f740c23 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - asymmetric
  - inference-free
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
model-index:
  - name: >-
      Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions
      tuples
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.124
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5334479218312598
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.45579365079365075
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.46561802519420487
            name: Dot Map@100
          - type: query_active_dims
            value: 6.380000114440918
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9997909704437966
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 61.24806594848633
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.997993314135755
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.4
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3466666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.3
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.23800000000000002
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.040488303582306345
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07189040859931932
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.08701508628551448
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.11292062654625955
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3021858396265333
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.45805555555555555
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.13275153404198187
            name: Dot Map@100
          - type: query_active_dims
            value: 4.760000228881836
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.999844046909479
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 77.5289535522461
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.997459899300431
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.54
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.76
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.128
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.51
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.59
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.71
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.526165293329912
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.47612698412698407
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.47036489156683237
            name: Dot Map@100
          - type: query_active_dims
            value: 9.4399995803833
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9996907149079227
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 54.611717224121094
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9982107425062539
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.3466666666666667
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5266666666666667
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5933333333333334
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7133333333333333
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3466666666666667
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.23777777777777778
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.18400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13133333333333333
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.22682943452743545
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3806301361997731
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.43233836209517146
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5343068755154198
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4539330182625683
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.46332539682539675
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3562448169343397
            name: Dot Map@100
          - type: query_active_dims
            value: 6.859999974568685
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9997752440870661
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 62.37333993104512
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9979564464998675
            name: Corpus Sparsity Ratio

Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples

This is a Asymmetric Inference-free SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Router(
    (sub_modules): ModuleDict(
      (query): Sequential(
        (0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
      )
      (document): Sequential(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
      )
    )
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("Jgmorenof/inference-free-splade-distilbert-base-uncased-nq")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[5.8161, 0.0000, 0.0000]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.3 0.4 0.34
dot_accuracy@3 0.56 0.48 0.54
dot_accuracy@5 0.62 0.52 0.64
dot_accuracy@10 0.78 0.6 0.76
dot_precision@1 0.3 0.4 0.34
dot_precision@3 0.1867 0.3467 0.18
dot_precision@5 0.124 0.3 0.128
dot_precision@10 0.078 0.238 0.078
dot_recall@1 0.3 0.0405 0.34
dot_recall@3 0.56 0.0719 0.51
dot_recall@5 0.62 0.087 0.59
dot_recall@10 0.78 0.1129 0.71
dot_ndcg@10 0.5334 0.3022 0.5262
dot_mrr@10 0.4558 0.4581 0.4761
dot_map@100 0.4656 0.1328 0.4704
query_active_dims 6.38 4.76 9.44
query_sparsity_ratio 0.9998 0.9998 0.9997
corpus_active_dims 61.2481 77.529 54.6117
corpus_sparsity_ratio 0.998 0.9975 0.9982

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3467
dot_accuracy@3 0.5267
dot_accuracy@5 0.5933
dot_accuracy@10 0.7133
dot_precision@1 0.3467
dot_precision@3 0.2378
dot_precision@5 0.184
dot_precision@10 0.1313
dot_recall@1 0.2268
dot_recall@3 0.3806
dot_recall@5 0.4323
dot_recall@10 0.5343
dot_ndcg@10 0.4539
dot_mrr@10 0.4633
dot_map@100 0.3562
query_active_dims 6.86
query_sparsity_ratio 0.9998
corpus_active_dims 62.3733
corpus_sparsity_ratio 0.998

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
        "document_regularizer_weight": 0.003,
        "query_regularizer_weight": 0
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
        "document_regularizer_weight": 0.003,
        "query_regularizer_weight": 0
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates
  • router_mapping: {'query': 'query', 'answer': 'document'}

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {'query': 'query', 'answer': 'document'}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0323 200 0.2374 - - - - -
0.0646 400 0.0873 - - - - -
0.0970 600 0.0736 - - - - -
0.1293 800 0.0637 - - - - -
0.1616 1000 0.066 0.0872 0.5087 0.3291 0.4883 0.4420
0.1939 1200 0.071 - - - - -
0.2262 1400 0.0777 - - - - -
0.2586 1600 0.089 - - - - -
0.2909 1800 0.0884 - - - - -
0.3232 2000 0.0887 0.1115 0.5183 0.3107 0.4583 0.4291
0.3555 2200 0.0916 - - - - -
0.3878 2400 0.0925 - - - - -
0.4202 2600 0.089 - - - - -
0.4525 2800 0.088 - - - - -
0.4848 3000 0.0837 0.1003 0.5358 0.3103 0.5365 0.4609
0.5171 3200 0.0825 - - - - -
0.5495 3400 0.0905 - - - - -
0.5818 3600 0.0823 - - - - -
0.6141 3800 0.089 - - - - -
0.6464 4000 0.0803 0.0960 0.5002 0.3057 0.5083 0.4381
0.6787 4200 0.0861 - - - - -
0.7111 4400 0.0798 - - - - -
0.7434 4600 0.0755 - - - - -
0.7757 4800 0.0798 - - - - -
0.8080 5000 0.0779 0.0910 0.5322 0.3009 0.5520 0.4617
0.8403 5200 0.083 - - - - -
0.8727 5400 0.078 - - - - -
0.9050 5600 0.0719 - - - - -
0.9373 5800 0.0733 - - - - -
0.9696 6000 0.0761 0.0852 0.5365 0.3051 0.5297 0.4571
-1 -1 - - 0.5334 0.3022 0.5262 0.4539

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.4
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}