whisper-small-finetuned-medical3

This model is a fine-tuned version of openai/whisper-small on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0671
  • Wer: 3.125

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4797 0.8696 10 0.4806 5.8239
0.4503 1.6957 20 0.4695 5.6818
0.4076 2.5217 30 0.4219 5.5398
0.3637 3.3478 40 0.3402 4.8295
0.2583 4.1739 50 0.1697 4.1193
0.1121 5.0 60 0.0978 3.8352
0.0751 5.8696 70 0.0825 3.8352
0.0464 6.6957 80 0.0671 3.125

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1

Usage

from transformers import pipeline
import gradio as gr

# Load the fine-tuned Whisper model for medical speech recognition
pipe = pipeline(model="Johnyquest7/whisper-small-finetuned-medical3", return_timestamps=True)

# Define transcription function
def transcribe(audio):
    text = pipe(audio)["text"]
    return text

# Create a Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
    outputs="text",
    title="Whisper Small Medical",
    description="Demo for medical speech recognition using a fine-tuned Whisper small model."
)

# Launch the interface
iface.launch()
Downloads last month
16
Safetensors
Model size
242M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Johnyquest7/whisper-small-finetuned-medical3

Finetuned
(2607)
this model

Evaluation results