ynat_model / README.md
Jongha611's picture
Jongha611/news-classifier
a680e72 verified
metadata
library_name: transformers
language:
  - ko
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
  - text-classification
  - KoELECTRA
  - Korean-NLP
  - topic-classification
  - news-classification
  - generated_from_trainer
model-index:
  - name: ynat_model
    results: []

ynat_model

This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:

  • eval_loss: 2.0522
  • eval_accuracy: 0.0917
  • eval_precision: 0.0131
  • eval_recall: 0.1429
  • eval_f1: 0.0240
  • eval_runtime: 14.6861
  • eval_samples_per_second: 620.111
  • eval_steps_per_second: 38.812
  • epoch: 1.0
  • step: 2855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4