JorgeGIT's picture
Model save
dc24622
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-Leukemia-cell
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9887218045112782

finetuned-Leukemia-cell

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0732
  • Accuracy: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2908 2.94 100 0.1524 0.9511
0.1806 5.88 200 0.1269 0.9586
0.1135 8.82 300 0.0720 0.9774
0.1061 11.76 400 0.1519 0.9624
0.0816 14.71 500 0.1845 0.9398
0.0815 17.65 600 0.0966 0.9737
0.0741 20.59 700 0.1029 0.9812
0.0423 23.53 800 0.1519 0.9699
0.0468 26.47 900 0.0757 0.9850
0.0249 29.41 1000 0.0859 0.9850
0.0443 32.35 1100 0.0878 0.9774
0.0291 35.29 1200 0.0487 0.9887
0.0263 38.24 1300 0.0643 0.9887
0.0239 41.18 1400 0.1042 0.9774
0.0331 44.12 1500 0.0679 0.9887
0.0103 47.06 1600 0.0723 0.9887
0.0131 50.0 1700 0.0732 0.9887

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0