📌 中文简介:Qwen-7B LoRA 微调模型(中文指令微调)

本模型基于阿里巴巴通义千问 Qwen-7B-Chat,采用 LoRA 技术,使用 Alpaca-Zh-51k 数据集进行了中文指令微调,适用于中文任务的理解与生成。

注: 对Chat进行微调后效果反而变差了,或许对base版本微调会好一些

🧾 模型信息

  • 基座模型Qwen/Qwen-7B-Chat
  • 微调方法:LoRA(使用 PEFT 库)
  • 训练数据集:Alpaca-Zh-51k
  • 训练脚本train_qwen7b_lora.py
  • 推理脚本test_compare.py
  • ⚠️ 本模型仅包含 LoRA adapter,不包含原始基座权重

🚀 使用示例

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

model_name = "Josh1207/qwen7b-alpaca-lora"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, model_name)

prompt = "指令: 请介绍一下你自己。"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

📌 English Overview: Qwen-7B LoRA Fine-tuned Model (Chinese Instruction Tuning)

This model is fine-tuned from Alibaba’s Qwen-7B-Chat using LoRA technique on the Alpaca-Zh-51k dataset. It is suitable for instruction-following tasks in Chinese.

(I found that after making adjustments to Chat model, the effect actually got worse. Perhaps making adjustments to the base version would be better)

🧾 Model Information

  • Base model: Qwen/Qwen-7B-Chat
  • Tuning method: LoRA (via peft)
  • Dataset: Alpaca-Zh-51k
  • Training script: train_qwen7b_lora.py
  • Inference script: test_compare.py
  • ⚠️ This repository includes only LoRA adapter weights, not the original base model.

🚀 Usage Example

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

model_name = "Josh1207/qwen7b-alpaca-lora"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, model_name)

prompt = "指令: 请介绍一下你自己。"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support