Edit model card

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1912
  • Precision: 0.7641
  • Recall: 0.8088
  • F1: 0.7858
  • Accuracy: 0.9677

Model description

El modelo base bert-base-cased es una versión pre-entrenada del popular modelo de lenguaje BERT de Google. Inicialmente fue entrenado en grandes cantidades de texto para aprender representaciones densas de palabras y secuencias. Posteriormente, este modelo toma la arquitectura y pesos pre-entrenados de bert-base-cased y los ajusta aún más en la tarea específica de Reconocimiento de Entidades Nombradas (NER por sus siglas en inglés) utilizando el conjunto de datos conll2002.

How to Use

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("JoshuaAAX/bert-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("JoshuaAAX/bert-finetuned-ner")


text = "La Federación nacional de cafeteros de Colombia es una entidad del estado. El primer presidente el Dr Augusto Guerra contó con el aval de la Asociación Colombiana de Aviación."


ner_pipeline= pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
ner_pipeline(text) 

Training data

Abbreviation Description
O Outside of NE
PER Person’s name
ORG Organization
LOC Location
MISC Miscellaneous

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1713 1.0 521 0.1404 0.6859 0.7387 0.7114 0.9599
0.0761 2.0 1042 0.1404 0.6822 0.7693 0.7231 0.9623
0.05 3.0 1563 0.1304 0.7488 0.7937 0.7706 0.9672
0.0355 4.0 2084 0.1454 0.7585 0.7960 0.7768 0.9664
0.0253 5.0 2605 0.1501 0.7549 0.8095 0.7812 0.9677
0.0184 6.0 3126 0.1726 0.7581 0.7992 0.7781 0.9662
0.0138 7.0 3647 0.1743 0.7524 0.8042 0.7774 0.9676
0.0112 8.0 4168 0.1853 0.7576 0.8022 0.7792 0.9674
0.0082 9.0 4689 0.1914 0.7595 0.8061 0.7821 0.9667
0.0073 10.0 5210 0.1912 0.7641 0.8088 0.7858 0.9677

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
31
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JoshuaAAX/bert-finetuned-ner

Finetuned
(1902)
this model

Dataset used to train JoshuaAAX/bert-finetuned-ner

Evaluation results