MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion
@article{zhang2024monst3r,
author = {Zhang, Junyi and Herrmann, Charles and Hur, Junhwa and Jampani, Varun and Darrell, Trevor and Cole, Forrester and Sun, Deqing and Yang, Ming-Hsuan},
title = {MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion},
journal = {arXiv preprint arxiv:2410.03825},
year = {2024}
}
Model info
- GitHub page: https://github.com/junyi42/monst3r
- Project page: https://monst3r-project.github.io/
- Paper: https://arxiv.org/abs/2410.03825
How to use
First, install monst3r. To load the model:
from dust3r.model import AsymmetricCroCo3DStereo
import torch
model = AsymmetricCroCo3DStereo.from_pretrained("Junyi42/MonST3R_PO-TA-S-W_ViTLarge_BaseDecoder_512_dpt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
- Downloads last month
- 1,422
Inference API (serverless) does not yet support dust3r models for this pipeline type.