Uploaded model

  • Developed by: K0909
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

このモデルは元のモデルでllm-jp/llm-jp-3-13bを使い、 データはichikara-instruction-003-001-1.jsonを使ってファインチューニングしたものです。 データセットとしてelyza-tasks-100-TV_0.jsonlを読み込み、 taskid,input,outputを出力することが出来ます

実行手順

以下の手順に従うことで、Hugging Face上のモデル(llm-jp/llm-jp-3-13b + llm-jp-3-13b-it_lora)を用いて入力データ(elyza-tasks-100-TV_0.jsonl)を推論し、その結果を{new_model_id}-outputs.jsonlというファイルに出力できます。

前提条件

  • Python環境があること(例: Google Colab)
  • Hugging Faceのアクセストークン (HF_TOKEN) が取得済みであること

セットアップ

  1. 必要なライブラリのインストールを行います。

    !pip uninstall unsloth -y
    !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
    !pip install --upgrade torch
    !pip install --upgrade xformers
    
    # Install Flash Attention 2 for softcapping support
    import torch
    if torch.cuda.get_device_capability()[0] >= 8:
     !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
     
    
  2. Hugging Faceのトークンを取得していることを確認してください。以下はGoogle Colabでuserdataを使う例です(実行環境に合わせて適宜変更してください)。

    from google.colab import userdata
    HF_TOKEN = userdata.get('HF_TOKEN')
    

モデル・トークナイザの読み込み

from unsloth import FastLanguageModel
import torch
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-it"

# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
    model,
    r = 32,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 32,
    lora_dropout = 0.05,
    bias = "none",
    use_gradient_checkpointing = "unsloth",
    random_state = 3407,
    use_rslora = False,
    loftq_config = None,
    max_seq_length = max_seq_length,
)

## 入力データの準備

`./elyza-tasks-100-TV_0.jsonl`というファイルからデータセットをロードします。

```python
from datasets import load_dataset

dataset = load_dataset("json", data_files="/content/drive/MyDrive/ichikara-instruction-003-001-1.json")

# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""


"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
    input = examples["text"] # 入力データ
    output = examples["output"] # 出力データ
    text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
    return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass

# # 各データにフォーマットを適用
dataset = dataset.map(
    formatting_prompts_func,
    num_proc= 4, # 並列処理数を指定
)

推論実行

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset=dataset["train"],
    max_seq_length = max_seq_length,
    dataset_text_field="formatted_text",
    packing = False,
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        num_train_epochs = 1,
        logging_steps = 10,
        warmup_steps = 10,
        save_steps=100,
        save_total_limit=2,
        max_steps=-1,
        learning_rate = 2e-4,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        group_by_length=True,
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)

#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

trainer_stats = trainer.train()


# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
import json
datasets = []
with open("/content/drive/MyDrive/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""



# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

出力の保存

最後に、adapter_idをベースにしたファイル名でJSONL形式の出力ファイルを保存します。

jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

# LoRAアダプタだけ保存
model.push_to_hub_merged(
    new_model_id+"_lora",
    tokenizer=tokenizer,
    save_method="lora",
    token=HF_TOKEN,
    private=True
)

以上の手順で、{new_model_id}-outputs.jsonlというファイルに推論結果が書き出されます。

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for K0909/llm-jp-3-13b-it_lora

Finetuned
(1120)
this model