πŸš€ Update News

  • 2025-10-13: Official release of KORMo-10B-base (Be aware that it's not an SFT model!!).

πŸ’‘ About KORMo

KORMo-10B is a 10.8B parameter fully open LLM capable of handling both Korean and English.
The model, training code, and training data are all fully open, allowing anyone to reproduce and extend them.

  • Model Size: 10.8B parameters
  • Languages: Korean / English
  • Training Data: Synthetic data + public datasets (approximately 3T tokens)
  • License: Apache 2.0
The First Fully Open-Source LLM from a Non-English Region

KORMo was created with a public-interest mission: to make world-class language models accessible to everyone.
Our goal is to empower anyone to build and advance their own large language models at a global standard.

Key Features:

1. A 10B-parameter Korean–English reasoning model trained entirely from scratch.
2. 100% open resources β€” including all training data, code, intermediate checkpoints, and tutorials β€” allowing anyone to reproduce and extend a near-SOTA model on their own.
3. 3 trillion tokens of training data released publicly, featuring never-before-shared, high-quality full-cycle Korean datasets (for pretraining, post-training, general, reasoning, and reinforcement learning).
4. A collaborative effort by eight master’s students at the KAIST Graduate School of Culture Technology (MLP Lab), documented in a 45-page research paper.

If you’ve ever used a Korean language model that performs well on benchmarks but feels strange in real use, or if fine-tuning only made it worse, you’re not alone.

KORMo solves these problems head-on.
By releasing every intermediate model and post-training dataset, we give users the freedom to build on the base model with their own data, customizing and fine-tuning it in any direction they want.

πŸ‘‰ "If you want a great Korean language model, now you can build it yourself. It even works with free Colab GPUs!" πŸ€—

πŸ”— Links


πŸ“ˆ Benchmark Performance

πŸ“Š Quantitative Evaluation

Benchmark KORMo-10B smolLM3-3B olmo2-7B olmo2-13B kanana1.5-8B qwen3-8B llama3.1-8B gemma3-4B gemma3-12B
πŸ‡ΊπŸ‡Έ English Benchmarks
arc_challenge 58.96 55.55 59.13 61.01 56.48 63.82 54.61 53.58 63.82
arc_easy 85.48 83.21 85.06 86.57 82.74 87.50 84.01 82.83 87.37
boolq 83.46 82.17 84.50 86.48 84.53 87.71 81.87 80.70 86.61
copa 93.00 91.00 92.00 93.00 88.00 92.00 93.00 89.00 95.00
gpqa_main 30.13 26.79 26.34 29.24 29.24 30.13 23.44 30.13 35.71
hellaswag 60.25 56.78 61.52 65.02 59.93 59.54 60.96 57.56 63.67
mmlu 67.96 61.37 62.81 66.85 63.73 76.95 65.03 59.60 73.58
mmlu_global 63.44 57.52 59.88 63.99 60.21 75.05 61.30 57.23 70.23
mmlu_pro 40.18 34.94 27.29 32.50 34.93 56.58 36.23 27.79 37.07
mmlu_redux 69.00 62.95 63.53 68.37 65.88 78.19 65.86 60.86 75.25
openbookqa 39.00 36.40 39.00 39.60 36.80 39.20 39.00 37.00 40.20
piqa 81.12 78.45 80.79 82.64 80.30 79.05 80.90 79.49 82.59
social_iqa 52.81 50.72 55.89 57.57 57.01 56.96 53.12 51.84 56.45
English Avg. 63.45 59.83 61.36 64.06 61.52 67.90 61.49 59.05 66.73
πŸ‡°πŸ‡· Korean Benchmarks
click 55.29 46.97 37.79 41.80 62.76 60.70 49.22 49.62 62.21
csatqa 38.00 26.67 19.33 24.67 44.67 52.00 28.67 28.67 31.33
haerae 68.29 55.82 31.62 37.58 80.75 67.19 53.25 60.68 74.34
k2_eval 84.89 75.23 49.54 63.43 84.72 84.72 76.62 76.39 85.42
kobest 75.05 69.13 57.27 59.02 81.93 80.05 70.55 69.33 77.70
kobalt 22.86 15.86 11.43 13.14 26.29 26.57 17.43 15.57 23.86
kmmlu 46.48 38.52 33.05 31.24 48.86 56.93 40.75 39.84 51.60
mmlu_global (ko) 55.16 44.15 34.00 36.95 52.65 61.95 46.34 46.33 59.68
kr_clinical_qa 77.32 53.97 48.33 46.22 65.84 80.00 63.54 60.00 77.22
Korean Avg. 58.15 47.37 35.82 39.34 60.94 63.35 49.60 49.60 60.37

πŸ“ Qualitative Evaluation (LLM-as-a-Judge)

Benchmark KORMo-10B smolLM3-3B olmo2-7B olmo2-13B kanana1.5-8B qwen3-8B llama3.1-8B exaone3.5-8B gemma3-12B
MT-Bench (EN) 8.32 7.15 7.32 7.64 8.45 8.70 6.32 8.15 8.70
KO-MT-Bench (KO) 8.54 - - - 8.02 8.16 4.27 8.13 8.51
LogicKor (KO) 8.96 - - - 8.94 8.63 6.45 9.20 8.46
Average 8.61 - - - 8.47 8.50 5.68 8.49 8.56

πŸ“¦ Installation

git clone https://github.com/MLP-Lab/KORMo-tutorial.git
cd KORMo-tutorial
bash setup/create_uv_venv.sh
source .venv_kormo/bin/activate

πŸš€ Inference Example

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "KORMo-Team/KORMo-10B-sft"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

messages = [
    {"role": "user", "content": "What happens inside a black hole?"}
]

chat_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False
)

inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device)

with torch.inference_mode():
    output_ids = model.generate(
        **inputs,
        max_new_tokens=1024,
    )

response = tokenizer.decode(output_ids[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print("Assistant:", response)

🧠 Enabling Thinking Mode

If you want to enable the thinking mode, simply set enable_thinking=True:

chat_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True
)

Contact

Acknowledgments

  • This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (RS-2025-02653113, High-Performance Research AI Computing Infrastructure Support at the 2 PFLOPS Scale)

Citation

@misc{KORMo,
  author = {Minjun Kim, Hyeonseok Lim, Hangyeol Yoo, Inho Won, Seungwoo Song, Minkyung Cho, Junghun Yuk, Changsu Choi, Dongjae Shin, Huije Lee, Hoyun Song, Alice Oh and KyungTae Lim},
  title = {KORMo: Korean Open Reasoning Model for Everyone},
  year = {2025},
  publisher = {GitHub},
  journal = {Technical Report},
  paperLink = {\url{https://arxiv.org/abs/2510.09426}},
 },
}
Downloads last month
918
Safetensors
Model size
11B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including KORMo-Team/KORMo-10B-base