timesformer-base-finetuned-k400-finetuned-yt_short_classification-3

This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4771
  • Accuracy: 0.8724
  • 0 Precision: 0.8472
  • 0 Recall: 0.8938
  • 0 F1-score: 0.8699
  • 0 Support: 24395.0
  • 1 Precision: 0.8979
  • 1 Recall: 0.8528
  • 1 F1-score: 0.8748
  • 1 Support: 26720.0
  • Accuracy F1-score: 0.8724
  • Macro avg Precision: 0.8726
  • Macro avg Recall: 0.8733
  • Macro avg F1-score: 0.8723
  • Macro avg Support: 51115.0
  • Weighted avg Precision: 0.8737
  • Weighted avg Recall: 0.8724
  • Weighted avg F1-score: 0.8725
  • Weighted avg Support: 51115.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 39620

Training results

Training Loss Epoch Step Validation Loss Accuracy 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support Accuracy F1-score Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support
0.6564 0.0500 1982 0.4807 0.7684 0.7250 0.8294 0.7737 24395.0 0.8206 0.7128 0.7629 26720.0 0.7684 0.7728 0.7711 0.7683 51115.0 0.7750 0.7684 0.7680 51115.0
0.6013 1.0500 3964 0.5336 0.7612 0.7301 0.7929 0.7602 24395.0 0.7948 0.7323 0.7623 26720.0 0.7612 0.7624 0.7626 0.7612 51115.0 0.7639 0.7612 0.7613 51115.0
0.4629 2.0500 5946 0.5388 0.7692 0.7280 0.8244 0.7732 24395.0 0.8176 0.7188 0.7650 26720.0 0.7692 0.7728 0.7716 0.7691 51115.0 0.7748 0.7692 0.7689 51115.0
0.6739 3.0500 7928 0.4304 0.8098 0.7891 0.8207 0.8046 24395.0 0.8301 0.7998 0.8147 26720.0 0.8098 0.8096 0.8102 0.8096 51115.0 0.8105 0.8098 0.8099 51115.0
0.2837 4.0500 9910 0.5067 0.8136 0.7818 0.8455 0.8124 24395.0 0.8476 0.7845 0.8148 26720.0 0.8136 0.8147 0.8150 0.8136 51115.0 0.8162 0.8136 0.8136 51115.0
0.6485 5.0500 11892 0.5121 0.8072 0.8035 0.7890 0.7962 24395.0 0.8105 0.8238 0.8171 26720.0 0.8072 0.8070 0.8064 0.8066 51115.0 0.8071 0.8072 0.8071 51115.0
0.5415 6.0500 13874 0.8758 0.6895 0.6096 0.9716 0.7492 24395.0 0.9434 0.4320 0.5926 26720.0 0.6895 0.7765 0.7018 0.6709 51115.0 0.7841 0.6895 0.6673 51115.0
0.3286 7.0500 15856 0.5110 0.8262 0.8450 0.7788 0.8105 24395.0 0.8115 0.8695 0.8395 26720.0 0.8262 0.8282 0.8242 0.8250 51115.0 0.8275 0.8262 0.8257 51115.0
0.3357 8.0500 17838 0.4913 0.8278 0.8414 0.7876 0.8136 24395.0 0.8168 0.8644 0.8399 26720.0 0.8278 0.8291 0.8260 0.8268 51115.0 0.8285 0.8278 0.8274 51115.0
0.3095 9.0500 19820 0.5020 0.8467 0.8483 0.8267 0.8374 24395.0 0.8454 0.8650 0.8551 26720.0 0.8467 0.8468 0.8458 0.8462 51115.0 0.8468 0.8467 0.8466 51115.0
0.6872 10.0500 21802 0.6839 0.7834 0.7049 0.9395 0.8055 24395.0 0.9207 0.6409 0.7558 26720.0 0.7834 0.8128 0.7902 0.7806 51115.0 0.8177 0.7834 0.7795 51115.0
0.2417 11.0500 23784 0.7490 0.8001 0.7235 0.9408 0.8180 24395.0 0.9256 0.6717 0.7784 26720.0 0.8001 0.8245 0.8063 0.7982 51115.0 0.8291 0.8001 0.7973 51115.0
0.6484 12.0500 25766 0.4507 0.8448 0.8540 0.8139 0.8335 24395.0 0.8371 0.8730 0.8547 26720.0 0.8448 0.8456 0.8435 0.8441 51115.0 0.8452 0.8448 0.8446 51115.0
0.4147 13.0500 27748 0.4223 0.8620 0.8307 0.8927 0.8606 24395.0 0.8949 0.8339 0.8633 26720.0 0.8620 0.8628 0.8633 0.8620 51115.0 0.8643 0.8620 0.8620 51115.0
0.6485 14.0500 29730 0.4759 0.8548 0.8523 0.8416 0.8470 24395.0 0.8571 0.8669 0.8619 26720.0 0.8548 0.8547 0.8543 0.8545 51115.0 0.8548 0.8548 0.8548 51115.0
0.3193 15.0500 31712 0.5955 0.8311 0.7551 0.9561 0.8438 24395.0 0.9471 0.7170 0.8161 26720.0 0.8311 0.8511 0.8365 0.8300 51115.0 0.8555 0.8311 0.8293 51115.0
0.4384 16.0500 33694 0.4914 0.8567 0.8308 0.8788 0.8541 24395.0 0.8832 0.8366 0.8592 26720.0 0.8567 0.8570 0.8577 0.8567 51115.0 0.8582 0.8567 0.8568 51115.0
0.2316 17.0500 35676 0.4951 0.8621 0.8282 0.8971 0.8613 24395.0 0.8983 0.8301 0.8629 26720.0 0.8621 0.8633 0.8636 0.8621 51115.0 0.8649 0.8621 0.8621 51115.0
0.3014 18.0500 37658 0.5001 0.8654 0.8245 0.9122 0.8662 24395.0 0.9113 0.8227 0.8647 26720.0 0.8654 0.8679 0.8675 0.8654 51115.0 0.8698 0.8654 0.8654 51115.0
0.2855 19.0495 39620 0.4771 0.8724 0.8472 0.8938 0.8699 24395.0 0.8979 0.8528 0.8748 26720.0 0.8724 0.8726 0.8733 0.8723 51115.0 0.8737 0.8724 0.8725 51115.0

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.0+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
20
Safetensors
Model size
121M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kartikeya/timesformer-base-finetuned-k400-finetuned-yt_short_classification-3

Finetuned
(53)
this model