File size: 9,850 Bytes
1f8a1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: timesformer-base-finetuned-k400-finetuned-yt_short_classification-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# timesformer-base-finetuned-k400-finetuned-yt_short_classification-3

This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4771
- Accuracy: 0.8724
- 0 Precision: 0.8472
- 0 Recall: 0.8938
- 0 F1-score: 0.8699
- 0 Support: 24395.0
- 1 Precision: 0.8979
- 1 Recall: 0.8528
- 1 F1-score: 0.8748
- 1 Support: 26720.0
- Accuracy F1-score: 0.8724
- Macro avg Precision: 0.8726
- Macro avg Recall: 0.8733
- Macro avg F1-score: 0.8723
- Macro avg Support: 51115.0
- Weighted avg Precision: 0.8737
- Weighted avg Recall: 0.8724
- Weighted avg F1-score: 0.8725
- Weighted avg Support: 51115.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 39620

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | Accuracy F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|
| 0.6564        | 0.0500  | 1982  | 0.4807          | 0.7684   | 0.7250      | 0.8294   | 0.7737     | 24395.0   | 0.8206      | 0.7128   | 0.7629     | 26720.0   | 0.7684            | 0.7728              | 0.7711           | 0.7683             | 51115.0           | 0.7750                 | 0.7684              | 0.7680                | 51115.0              |
| 0.6013        | 1.0500  | 3964  | 0.5336          | 0.7612   | 0.7301      | 0.7929   | 0.7602     | 24395.0   | 0.7948      | 0.7323   | 0.7623     | 26720.0   | 0.7612            | 0.7624              | 0.7626           | 0.7612             | 51115.0           | 0.7639                 | 0.7612              | 0.7613                | 51115.0              |
| 0.4629        | 2.0500  | 5946  | 0.5388          | 0.7692   | 0.7280      | 0.8244   | 0.7732     | 24395.0   | 0.8176      | 0.7188   | 0.7650     | 26720.0   | 0.7692            | 0.7728              | 0.7716           | 0.7691             | 51115.0           | 0.7748                 | 0.7692              | 0.7689                | 51115.0              |
| 0.6739        | 3.0500  | 7928  | 0.4304          | 0.8098   | 0.7891      | 0.8207   | 0.8046     | 24395.0   | 0.8301      | 0.7998   | 0.8147     | 26720.0   | 0.8098            | 0.8096              | 0.8102           | 0.8096             | 51115.0           | 0.8105                 | 0.8098              | 0.8099                | 51115.0              |
| 0.2837        | 4.0500  | 9910  | 0.5067          | 0.8136   | 0.7818      | 0.8455   | 0.8124     | 24395.0   | 0.8476      | 0.7845   | 0.8148     | 26720.0   | 0.8136            | 0.8147              | 0.8150           | 0.8136             | 51115.0           | 0.8162                 | 0.8136              | 0.8136                | 51115.0              |
| 0.6485        | 5.0500  | 11892 | 0.5121          | 0.8072   | 0.8035      | 0.7890   | 0.7962     | 24395.0   | 0.8105      | 0.8238   | 0.8171     | 26720.0   | 0.8072            | 0.8070              | 0.8064           | 0.8066             | 51115.0           | 0.8071                 | 0.8072              | 0.8071                | 51115.0              |
| 0.5415        | 6.0500  | 13874 | 0.8758          | 0.6895   | 0.6096      | 0.9716   | 0.7492     | 24395.0   | 0.9434      | 0.4320   | 0.5926     | 26720.0   | 0.6895            | 0.7765              | 0.7018           | 0.6709             | 51115.0           | 0.7841                 | 0.6895              | 0.6673                | 51115.0              |
| 0.3286        | 7.0500  | 15856 | 0.5110          | 0.8262   | 0.8450      | 0.7788   | 0.8105     | 24395.0   | 0.8115      | 0.8695   | 0.8395     | 26720.0   | 0.8262            | 0.8282              | 0.8242           | 0.8250             | 51115.0           | 0.8275                 | 0.8262              | 0.8257                | 51115.0              |
| 0.3357        | 8.0500  | 17838 | 0.4913          | 0.8278   | 0.8414      | 0.7876   | 0.8136     | 24395.0   | 0.8168      | 0.8644   | 0.8399     | 26720.0   | 0.8278            | 0.8291              | 0.8260           | 0.8268             | 51115.0           | 0.8285                 | 0.8278              | 0.8274                | 51115.0              |
| 0.3095        | 9.0500  | 19820 | 0.5020          | 0.8467   | 0.8483      | 0.8267   | 0.8374     | 24395.0   | 0.8454      | 0.8650   | 0.8551     | 26720.0   | 0.8467            | 0.8468              | 0.8458           | 0.8462             | 51115.0           | 0.8468                 | 0.8467              | 0.8466                | 51115.0              |
| 0.6872        | 10.0500 | 21802 | 0.6839          | 0.7834   | 0.7049      | 0.9395   | 0.8055     | 24395.0   | 0.9207      | 0.6409   | 0.7558     | 26720.0   | 0.7834            | 0.8128              | 0.7902           | 0.7806             | 51115.0           | 0.8177                 | 0.7834              | 0.7795                | 51115.0              |
| 0.2417        | 11.0500 | 23784 | 0.7490          | 0.8001   | 0.7235      | 0.9408   | 0.8180     | 24395.0   | 0.9256      | 0.6717   | 0.7784     | 26720.0   | 0.8001            | 0.8245              | 0.8063           | 0.7982             | 51115.0           | 0.8291                 | 0.8001              | 0.7973                | 51115.0              |
| 0.6484        | 12.0500 | 25766 | 0.4507          | 0.8448   | 0.8540      | 0.8139   | 0.8335     | 24395.0   | 0.8371      | 0.8730   | 0.8547     | 26720.0   | 0.8448            | 0.8456              | 0.8435           | 0.8441             | 51115.0           | 0.8452                 | 0.8448              | 0.8446                | 51115.0              |
| 0.4147        | 13.0500 | 27748 | 0.4223          | 0.8620   | 0.8307      | 0.8927   | 0.8606     | 24395.0   | 0.8949      | 0.8339   | 0.8633     | 26720.0   | 0.8620            | 0.8628              | 0.8633           | 0.8620             | 51115.0           | 0.8643                 | 0.8620              | 0.8620                | 51115.0              |
| 0.6485        | 14.0500 | 29730 | 0.4759          | 0.8548   | 0.8523      | 0.8416   | 0.8470     | 24395.0   | 0.8571      | 0.8669   | 0.8619     | 26720.0   | 0.8548            | 0.8547              | 0.8543           | 0.8545             | 51115.0           | 0.8548                 | 0.8548              | 0.8548                | 51115.0              |
| 0.3193        | 15.0500 | 31712 | 0.5955          | 0.8311   | 0.7551      | 0.9561   | 0.8438     | 24395.0   | 0.9471      | 0.7170   | 0.8161     | 26720.0   | 0.8311            | 0.8511              | 0.8365           | 0.8300             | 51115.0           | 0.8555                 | 0.8311              | 0.8293                | 51115.0              |
| 0.4384        | 16.0500 | 33694 | 0.4914          | 0.8567   | 0.8308      | 0.8788   | 0.8541     | 24395.0   | 0.8832      | 0.8366   | 0.8592     | 26720.0   | 0.8567            | 0.8570              | 0.8577           | 0.8567             | 51115.0           | 0.8582                 | 0.8567              | 0.8568                | 51115.0              |
| 0.2316        | 17.0500 | 35676 | 0.4951          | 0.8621   | 0.8282      | 0.8971   | 0.8613     | 24395.0   | 0.8983      | 0.8301   | 0.8629     | 26720.0   | 0.8621            | 0.8633              | 0.8636           | 0.8621             | 51115.0           | 0.8649                 | 0.8621              | 0.8621                | 51115.0              |
| 0.3014        | 18.0500 | 37658 | 0.5001          | 0.8654   | 0.8245      | 0.9122   | 0.8662     | 24395.0   | 0.9113      | 0.8227   | 0.8647     | 26720.0   | 0.8654            | 0.8679              | 0.8675           | 0.8654             | 51115.0           | 0.8698                 | 0.8654              | 0.8654                | 51115.0              |
| 0.2855        | 19.0495 | 39620 | 0.4771          | 0.8724   | 0.8472      | 0.8938   | 0.8699     | 24395.0   | 0.8979      | 0.8528   | 0.8748     | 26720.0   | 0.8724            | 0.8726              | 0.8733           | 0.8723             | 51115.0           | 0.8737                 | 0.8724              | 0.8725                | 51115.0              |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.0.0+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3