videomae-base-finetuned-yt_short_classification
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4704
- Accuracy: 0.7815
- 0 Precision: 0.7484
- 0 Recall: 0.8149
- 0 F1-score: 0.7803
- 0 Support: 6322.0
- 1 Precision: 0.8170
- 1 Recall: 0.7510
- 1 F1-score: 0.7827
- 1 Support: 6957.0
- Accuracy F1-score: 0.7815
- Macro avg Precision: 0.7827
- Macro avg Recall: 0.7830
- Macro avg F1-score: 0.7815
- Macro avg Support: 13279.0
- Weighted avg Precision: 0.7844
- Weighted avg Recall: 0.7815
- Weighted avg F1-score: 0.7815
- Weighted avg Support: 13279.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2060
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | Accuracy F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6282 | 0.2005 | 413 | 0.6101 | 0.6848 | 0.7561 | 0.4991 | 0.6012 | 6322.0 | 0.6522 | 0.8537 | 0.7395 | 6957.0 | 0.6848 | 0.7041 | 0.6764 | 0.6704 | 13279.0 | 0.7016 | 0.6848 | 0.6737 | 13279.0 |
0.6569 | 1.2005 | 826 | 0.5357 | 0.7290 | 0.7392 | 0.6655 | 0.7004 | 6322.0 | 0.7213 | 0.7867 | 0.7526 | 6957.0 | 0.7290 | 0.7303 | 0.7261 | 0.7265 | 13279.0 | 0.7298 | 0.7290 | 0.7277 | 13279.0 |
0.5064 | 2.2005 | 1239 | 0.4839 | 0.7687 | 0.7517 | 0.7680 | 0.7597 | 6322.0 | 0.7849 | 0.7694 | 0.7771 | 6957.0 | 0.7687 | 0.7683 | 0.7687 | 0.7684 | 13279.0 | 0.7691 | 0.7687 | 0.7688 | 13279.0 |
0.4293 | 3.2005 | 1652 | 0.5120 | 0.7518 | 0.6850 | 0.8861 | 0.7727 | 6322.0 | 0.8589 | 0.6297 | 0.7267 | 6957.0 | 0.7518 | 0.7719 | 0.7579 | 0.7497 | 13279.0 | 0.7761 | 0.7518 | 0.7486 | 13279.0 |
0.421 | 4.1981 | 2060 | 0.4704 | 0.7815 | 0.7484 | 0.8149 | 0.7803 | 6322.0 | 0.8170 | 0.7510 | 0.7827 | 6957.0 | 0.7815 | 0.7827 | 0.7830 | 0.7815 | 13279.0 | 0.7844 | 0.7815 | 0.7815 | 13279.0 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.0.0+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kartikeya/videomae-base-finetuned-yt_short_classification
Base model
MCG-NJU/videomae-base