videomae-base-finetuned-yt_short_classification-2
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4733
- Accuracy: 0.7818
- 0 Precision: 0.7333
- 0 Recall: 0.8515
- 0 F1-score: 0.7880
- 0 Support: 6322.0
- 1 Precision: 0.8419
- 1 Recall: 0.7186
- 1 F1-score: 0.7753
- 1 Support: 6957.0
- Accuracy F1-score: 0.7818
- Macro avg Precision: 0.7876
- Macro avg Recall: 0.7850
- Macro avg F1-score: 0.7817
- Macro avg Support: 13279.0
- Weighted avg Precision: 0.7902
- Weighted avg Recall: 0.7818
- Weighted avg F1-score: 0.7814
- Weighted avg Support: 13279.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4120
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | Accuracy F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6122 | 0.1002 | 413 | 0.7143 | 0.6551 | 0.5925 | 0.8828 | 0.7091 | 6322.0 | 0.8080 | 0.4482 | 0.5766 | 6957.0 | 0.6551 | 0.7002 | 0.6655 | 0.6428 | 13279.0 | 0.7054 | 0.6551 | 0.6396 | 13279.0 |
0.6904 | 1.1002 | 826 | 0.5800 | 0.6909 | 0.8170 | 0.4519 | 0.5819 | 6322.0 | 0.6458 | 0.9080 | 0.7548 | 6957.0 | 0.6909 | 0.7314 | 0.6800 | 0.6683 | 13279.0 | 0.7273 | 0.6909 | 0.6725 | 13279.0 |
0.5489 | 2.1002 | 1239 | 0.5122 | 0.7555 | 0.7450 | 0.7395 | 0.7422 | 6322.0 | 0.7648 | 0.7700 | 0.7674 | 6957.0 | 0.7555 | 0.7549 | 0.7547 | 0.7548 | 13279.0 | 0.7554 | 0.7555 | 0.7554 | 13279.0 |
0.4979 | 3.1002 | 1652 | 0.5434 | 0.7443 | 0.6785 | 0.8798 | 0.7662 | 6322.0 | 0.8505 | 0.6212 | 0.7180 | 6957.0 | 0.7443 | 0.7645 | 0.7505 | 0.7421 | 13279.0 | 0.7686 | 0.7443 | 0.7409 | 13279.0 |
0.5141 | 4.1002 | 2065 | 0.4793 | 0.7723 | 0.7482 | 0.7866 | 0.7669 | 6322.0 | 0.7966 | 0.7594 | 0.7775 | 6957.0 | 0.7723 | 0.7724 | 0.7730 | 0.7722 | 13279.0 | 0.7735 | 0.7723 | 0.7725 | 13279.0 |
0.4472 | 5.1002 | 2478 | 0.4673 | 0.7798 | 0.7398 | 0.8290 | 0.7819 | 6322.0 | 0.8255 | 0.7351 | 0.7777 | 6957.0 | 0.7798 | 0.7827 | 0.7820 | 0.7798 | 13279.0 | 0.7847 | 0.7798 | 0.7797 | 13279.0 |
0.4108 | 6.1002 | 2891 | 0.4491 | 0.7952 | 0.7715 | 0.8096 | 0.7901 | 6322.0 | 0.8188 | 0.7821 | 0.8000 | 6957.0 | 0.7952 | 0.7951 | 0.7958 | 0.7950 | 13279.0 | 0.7963 | 0.7952 | 0.7953 | 13279.0 |
0.3756 | 7.1002 | 3304 | 0.4955 | 0.7773 | 0.7472 | 0.8045 | 0.7748 | 6322.0 | 0.8090 | 0.7526 | 0.7798 | 6957.0 | 0.7773 | 0.7781 | 0.7786 | 0.7773 | 13279.0 | 0.7796 | 0.7773 | 0.7774 | 13279.0 |
0.3147 | 8.1002 | 3717 | 0.5889 | 0.7318 | 0.6523 | 0.9348 | 0.7684 | 6322.0 | 0.9023 | 0.5472 | 0.6813 | 6957.0 | 0.7318 | 0.7773 | 0.7410 | 0.7249 | 13279.0 | 0.7833 | 0.7318 | 0.7228 | 13279.0 |
0.4019 | 9.0978 | 4120 | 0.4733 | 0.7818 | 0.7333 | 0.8515 | 0.7880 | 6322.0 | 0.8419 | 0.7186 | 0.7753 | 6957.0 | 0.7818 | 0.7876 | 0.7850 | 0.7817 | 13279.0 | 0.7902 | 0.7818 | 0.7814 | 13279.0 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.0.0+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kartikeya/videomae-base-finetuned-yt_short_classification-2
Base model
MCG-NJU/videomae-base