videomae-base-finetuned-yt_short_classification-2

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4733
  • Accuracy: 0.7818
  • 0 Precision: 0.7333
  • 0 Recall: 0.8515
  • 0 F1-score: 0.7880
  • 0 Support: 6322.0
  • 1 Precision: 0.8419
  • 1 Recall: 0.7186
  • 1 F1-score: 0.7753
  • 1 Support: 6957.0
  • Accuracy F1-score: 0.7818
  • Macro avg Precision: 0.7876
  • Macro avg Recall: 0.7850
  • Macro avg F1-score: 0.7817
  • Macro avg Support: 13279.0
  • Weighted avg Precision: 0.7902
  • Weighted avg Recall: 0.7818
  • Weighted avg F1-score: 0.7814
  • Weighted avg Support: 13279.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4120

Training results

Training Loss Epoch Step Validation Loss Accuracy 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support Accuracy F1-score Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support
0.6122 0.1002 413 0.7143 0.6551 0.5925 0.8828 0.7091 6322.0 0.8080 0.4482 0.5766 6957.0 0.6551 0.7002 0.6655 0.6428 13279.0 0.7054 0.6551 0.6396 13279.0
0.6904 1.1002 826 0.5800 0.6909 0.8170 0.4519 0.5819 6322.0 0.6458 0.9080 0.7548 6957.0 0.6909 0.7314 0.6800 0.6683 13279.0 0.7273 0.6909 0.6725 13279.0
0.5489 2.1002 1239 0.5122 0.7555 0.7450 0.7395 0.7422 6322.0 0.7648 0.7700 0.7674 6957.0 0.7555 0.7549 0.7547 0.7548 13279.0 0.7554 0.7555 0.7554 13279.0
0.4979 3.1002 1652 0.5434 0.7443 0.6785 0.8798 0.7662 6322.0 0.8505 0.6212 0.7180 6957.0 0.7443 0.7645 0.7505 0.7421 13279.0 0.7686 0.7443 0.7409 13279.0
0.5141 4.1002 2065 0.4793 0.7723 0.7482 0.7866 0.7669 6322.0 0.7966 0.7594 0.7775 6957.0 0.7723 0.7724 0.7730 0.7722 13279.0 0.7735 0.7723 0.7725 13279.0
0.4472 5.1002 2478 0.4673 0.7798 0.7398 0.8290 0.7819 6322.0 0.8255 0.7351 0.7777 6957.0 0.7798 0.7827 0.7820 0.7798 13279.0 0.7847 0.7798 0.7797 13279.0
0.4108 6.1002 2891 0.4491 0.7952 0.7715 0.8096 0.7901 6322.0 0.8188 0.7821 0.8000 6957.0 0.7952 0.7951 0.7958 0.7950 13279.0 0.7963 0.7952 0.7953 13279.0
0.3756 7.1002 3304 0.4955 0.7773 0.7472 0.8045 0.7748 6322.0 0.8090 0.7526 0.7798 6957.0 0.7773 0.7781 0.7786 0.7773 13279.0 0.7796 0.7773 0.7774 13279.0
0.3147 8.1002 3717 0.5889 0.7318 0.6523 0.9348 0.7684 6322.0 0.9023 0.5472 0.6813 6957.0 0.7318 0.7773 0.7410 0.7249 13279.0 0.7833 0.7318 0.7228 13279.0
0.4019 9.0978 4120 0.4733 0.7818 0.7333 0.8515 0.7880 6322.0 0.8419 0.7186 0.7753 6957.0 0.7818 0.7876 0.7850 0.7817 13279.0 0.7902 0.7818 0.7814 13279.0

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.0+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kartikeya/videomae-base-finetuned-yt_short_classification-2

Finetuned
(603)
this model