videomae-base-finetuned-yt_short_classification-3

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4759
  • Accuracy: 0.7968
  • 0 Precision: 0.7671
  • 0 Recall: 0.8232
  • 0 F1-score: 0.7941
  • 0 Support: 6322.0
  • 1 Precision: 0.8279
  • 1 Recall: 0.7729
  • 1 F1-score: 0.7994
  • 1 Support: 6957.0
  • Accuracy F1-score: 0.7968
  • Macro avg Precision: 0.7975
  • Macro avg Recall: 0.7980
  • Macro avg F1-score: 0.7968
  • Macro avg Support: 13279.0
  • Weighted avg Precision: 0.7989
  • Weighted avg Recall: 0.7968
  • Weighted avg F1-score: 0.7969
  • Weighted avg Support: 13279.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 8240

Training results

Training Loss Epoch Step Validation Loss Accuracy 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support Accuracy F1-score Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support
0.6086 0.0501 413 0.5774 0.7153 0.6893 0.7320 0.7100 6322.0 0.7420 0.7002 0.7205 6957.0 0.7153 0.7156 0.7161 0.7152 13279.0 0.7169 0.7153 0.7155 13279.0
0.7001 1.0501 826 0.5860 0.7059 0.7671 0.5487 0.6398 6322.0 0.6742 0.8486 0.7514 6957.0 0.7059 0.7207 0.6987 0.6956 13279.0 0.7184 0.7059 0.6983 13279.0
0.5946 2.0501 1239 0.5355 0.7391 0.7899 0.6156 0.6920 6322.0 0.7091 0.8512 0.7737 6957.0 0.7391 0.7495 0.7334 0.7328 13279.0 0.7476 0.7391 0.7348 13279.0
0.5304 3.0501 1652 0.5068 0.7592 0.7034 0.8543 0.7716 6322.0 0.8356 0.6727 0.7453 6957.0 0.7592 0.7695 0.7635 0.7585 13279.0 0.7727 0.7592 0.7578 13279.0
0.4982 4.0501 2065 0.5257 0.7595 0.7060 0.8481 0.7706 6322.0 0.8311 0.6790 0.7474 6957.0 0.7595 0.7685 0.7636 0.7590 13279.0 0.7715 0.7595 0.7584 13279.0
0.5006 5.0501 2478 0.4784 0.7736 0.8036 0.6939 0.7448 6322.0 0.7526 0.8459 0.7965 6957.0 0.7736 0.7781 0.7699 0.7706 13279.0 0.7769 0.7736 0.7719 13279.0
0.4356 6.0501 2891 0.4878 0.7772 0.7188 0.8738 0.7887 6322.0 0.8573 0.6894 0.7642 6957.0 0.7772 0.7881 0.7816 0.7765 13279.0 0.7914 0.7772 0.7759 13279.0
0.4393 7.0501 3304 0.4555 0.7884 0.7969 0.7455 0.7703 6322.0 0.7815 0.8274 0.8038 6957.0 0.7884 0.7892 0.7864 0.7871 13279.0 0.7889 0.7884 0.7879 13279.0
0.3447 8.0501 3717 0.4561 0.7946 0.8046 0.7509 0.7768 6322.0 0.7866 0.8343 0.8097 6957.0 0.7946 0.7956 0.7926 0.7933 13279.0 0.7951 0.7946 0.7940 13279.0
0.4447 9.0501 4130 0.4655 0.7793 0.7202 0.8771 0.7910 6322.0 0.8608 0.6904 0.7662 6957.0 0.7793 0.7905 0.7837 0.7786 13279.0 0.7938 0.7793 0.7780 13279.0
0.4503 10.0501 4543 0.4822 0.7748 0.8554 0.6343 0.7284 6322.0 0.7309 0.9025 0.8077 6957.0 0.7748 0.7931 0.7684 0.7681 13279.0 0.7902 0.7748 0.7700 13279.0
0.3794 11.0501 4956 0.5383 0.7577 0.6870 0.9018 0.7799 6322.0 0.8753 0.6267 0.7304 6957.0 0.7577 0.7812 0.7642 0.7552 13279.0 0.7857 0.7577 0.7540 13279.0
0.3636 12.0501 5369 0.4371 0.8049 0.7832 0.8160 0.7993 6322.0 0.8262 0.7947 0.8102 6957.0 0.8049 0.8047 0.8054 0.8047 13279.0 0.8057 0.8049 0.8050 13279.0
0.4918 13.0501 5782 0.4571 0.8010 0.8331 0.7278 0.7769 6322.0 0.7781 0.8675 0.8204 6957.0 0.8010 0.8056 0.7976 0.7986 13279.0 0.8043 0.8010 0.7997 13279.0
0.4904 14.0501 6195 0.4412 0.8047 0.7801 0.8211 0.8001 6322.0 0.8293 0.7897 0.8090 6957.0 0.8047 0.8047 0.8054 0.8046 13279.0 0.8059 0.8047 0.8048 13279.0
0.2887 15.0501 6608 0.4838 0.7829 0.7317 0.8589 0.7902 6322.0 0.8477 0.7138 0.7750 6957.0 0.7829 0.7897 0.7864 0.7826 13279.0 0.7925 0.7829 0.7823 13279.0
0.3773 16.0501 7021 0.5072 0.7778 0.7140 0.8896 0.7922 6322.0 0.8708 0.6762 0.7612 6957.0 0.7778 0.7924 0.7829 0.7767 13279.0 0.7961 0.7778 0.7760 13279.0
0.3193 17.0501 7434 0.4759 0.7968 0.7671 0.8232 0.7941 6322.0 0.8279 0.7729 0.7994 6957.0 0.7968 0.7975 0.7980 0.7968 13279.0 0.7989 0.7968 0.7969 13279.0

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.0+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
31
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kartikeya/videomae-base-finetuned-yt_short_classification-3

Finetuned
(603)
this model