videomae-base-finetuned-yt_short_classification-3
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4759
- Accuracy: 0.7968
- 0 Precision: 0.7671
- 0 Recall: 0.8232
- 0 F1-score: 0.7941
- 0 Support: 6322.0
- 1 Precision: 0.8279
- 1 Recall: 0.7729
- 1 F1-score: 0.7994
- 1 Support: 6957.0
- Accuracy F1-score: 0.7968
- Macro avg Precision: 0.7975
- Macro avg Recall: 0.7980
- Macro avg F1-score: 0.7968
- Macro avg Support: 13279.0
- Weighted avg Precision: 0.7989
- Weighted avg Recall: 0.7968
- Weighted avg F1-score: 0.7969
- Weighted avg Support: 13279.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 8240
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | Accuracy F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6086 | 0.0501 | 413 | 0.5774 | 0.7153 | 0.6893 | 0.7320 | 0.7100 | 6322.0 | 0.7420 | 0.7002 | 0.7205 | 6957.0 | 0.7153 | 0.7156 | 0.7161 | 0.7152 | 13279.0 | 0.7169 | 0.7153 | 0.7155 | 13279.0 |
0.7001 | 1.0501 | 826 | 0.5860 | 0.7059 | 0.7671 | 0.5487 | 0.6398 | 6322.0 | 0.6742 | 0.8486 | 0.7514 | 6957.0 | 0.7059 | 0.7207 | 0.6987 | 0.6956 | 13279.0 | 0.7184 | 0.7059 | 0.6983 | 13279.0 |
0.5946 | 2.0501 | 1239 | 0.5355 | 0.7391 | 0.7899 | 0.6156 | 0.6920 | 6322.0 | 0.7091 | 0.8512 | 0.7737 | 6957.0 | 0.7391 | 0.7495 | 0.7334 | 0.7328 | 13279.0 | 0.7476 | 0.7391 | 0.7348 | 13279.0 |
0.5304 | 3.0501 | 1652 | 0.5068 | 0.7592 | 0.7034 | 0.8543 | 0.7716 | 6322.0 | 0.8356 | 0.6727 | 0.7453 | 6957.0 | 0.7592 | 0.7695 | 0.7635 | 0.7585 | 13279.0 | 0.7727 | 0.7592 | 0.7578 | 13279.0 |
0.4982 | 4.0501 | 2065 | 0.5257 | 0.7595 | 0.7060 | 0.8481 | 0.7706 | 6322.0 | 0.8311 | 0.6790 | 0.7474 | 6957.0 | 0.7595 | 0.7685 | 0.7636 | 0.7590 | 13279.0 | 0.7715 | 0.7595 | 0.7584 | 13279.0 |
0.5006 | 5.0501 | 2478 | 0.4784 | 0.7736 | 0.8036 | 0.6939 | 0.7448 | 6322.0 | 0.7526 | 0.8459 | 0.7965 | 6957.0 | 0.7736 | 0.7781 | 0.7699 | 0.7706 | 13279.0 | 0.7769 | 0.7736 | 0.7719 | 13279.0 |
0.4356 | 6.0501 | 2891 | 0.4878 | 0.7772 | 0.7188 | 0.8738 | 0.7887 | 6322.0 | 0.8573 | 0.6894 | 0.7642 | 6957.0 | 0.7772 | 0.7881 | 0.7816 | 0.7765 | 13279.0 | 0.7914 | 0.7772 | 0.7759 | 13279.0 |
0.4393 | 7.0501 | 3304 | 0.4555 | 0.7884 | 0.7969 | 0.7455 | 0.7703 | 6322.0 | 0.7815 | 0.8274 | 0.8038 | 6957.0 | 0.7884 | 0.7892 | 0.7864 | 0.7871 | 13279.0 | 0.7889 | 0.7884 | 0.7879 | 13279.0 |
0.3447 | 8.0501 | 3717 | 0.4561 | 0.7946 | 0.8046 | 0.7509 | 0.7768 | 6322.0 | 0.7866 | 0.8343 | 0.8097 | 6957.0 | 0.7946 | 0.7956 | 0.7926 | 0.7933 | 13279.0 | 0.7951 | 0.7946 | 0.7940 | 13279.0 |
0.4447 | 9.0501 | 4130 | 0.4655 | 0.7793 | 0.7202 | 0.8771 | 0.7910 | 6322.0 | 0.8608 | 0.6904 | 0.7662 | 6957.0 | 0.7793 | 0.7905 | 0.7837 | 0.7786 | 13279.0 | 0.7938 | 0.7793 | 0.7780 | 13279.0 |
0.4503 | 10.0501 | 4543 | 0.4822 | 0.7748 | 0.8554 | 0.6343 | 0.7284 | 6322.0 | 0.7309 | 0.9025 | 0.8077 | 6957.0 | 0.7748 | 0.7931 | 0.7684 | 0.7681 | 13279.0 | 0.7902 | 0.7748 | 0.7700 | 13279.0 |
0.3794 | 11.0501 | 4956 | 0.5383 | 0.7577 | 0.6870 | 0.9018 | 0.7799 | 6322.0 | 0.8753 | 0.6267 | 0.7304 | 6957.0 | 0.7577 | 0.7812 | 0.7642 | 0.7552 | 13279.0 | 0.7857 | 0.7577 | 0.7540 | 13279.0 |
0.3636 | 12.0501 | 5369 | 0.4371 | 0.8049 | 0.7832 | 0.8160 | 0.7993 | 6322.0 | 0.8262 | 0.7947 | 0.8102 | 6957.0 | 0.8049 | 0.8047 | 0.8054 | 0.8047 | 13279.0 | 0.8057 | 0.8049 | 0.8050 | 13279.0 |
0.4918 | 13.0501 | 5782 | 0.4571 | 0.8010 | 0.8331 | 0.7278 | 0.7769 | 6322.0 | 0.7781 | 0.8675 | 0.8204 | 6957.0 | 0.8010 | 0.8056 | 0.7976 | 0.7986 | 13279.0 | 0.8043 | 0.8010 | 0.7997 | 13279.0 |
0.4904 | 14.0501 | 6195 | 0.4412 | 0.8047 | 0.7801 | 0.8211 | 0.8001 | 6322.0 | 0.8293 | 0.7897 | 0.8090 | 6957.0 | 0.8047 | 0.8047 | 0.8054 | 0.8046 | 13279.0 | 0.8059 | 0.8047 | 0.8048 | 13279.0 |
0.2887 | 15.0501 | 6608 | 0.4838 | 0.7829 | 0.7317 | 0.8589 | 0.7902 | 6322.0 | 0.8477 | 0.7138 | 0.7750 | 6957.0 | 0.7829 | 0.7897 | 0.7864 | 0.7826 | 13279.0 | 0.7925 | 0.7829 | 0.7823 | 13279.0 |
0.3773 | 16.0501 | 7021 | 0.5072 | 0.7778 | 0.7140 | 0.8896 | 0.7922 | 6322.0 | 0.8708 | 0.6762 | 0.7612 | 6957.0 | 0.7778 | 0.7924 | 0.7829 | 0.7767 | 13279.0 | 0.7961 | 0.7778 | 0.7760 | 13279.0 |
0.3193 | 17.0501 | 7434 | 0.4759 | 0.7968 | 0.7671 | 0.8232 | 0.7941 | 6322.0 | 0.8279 | 0.7729 | 0.7994 | 6957.0 | 0.7968 | 0.7975 | 0.7980 | 0.7968 | 13279.0 | 0.7989 | 0.7968 | 0.7969 | 13279.0 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.0.0+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 31
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kartikeya/videomae-base-finetuned-yt_short_classification-3
Base model
MCG-NJU/videomae-base