Model save
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: MCG-NJU/videomae-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: videomae-base-finetuned-yt_short_classification
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# videomae-base-finetuned-yt_short_classification
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4704
|
22 |
+
- Accuracy: 0.7815
|
23 |
+
- 0 Precision: 0.7484
|
24 |
+
- 0 Recall: 0.8149
|
25 |
+
- 0 F1-score: 0.7803
|
26 |
+
- 0 Support: 6322.0
|
27 |
+
- 1 Precision: 0.8170
|
28 |
+
- 1 Recall: 0.7510
|
29 |
+
- 1 F1-score: 0.7827
|
30 |
+
- 1 Support: 6957.0
|
31 |
+
- Accuracy F1-score: 0.7815
|
32 |
+
- Macro avg Precision: 0.7827
|
33 |
+
- Macro avg Recall: 0.7830
|
34 |
+
- Macro avg F1-score: 0.7815
|
35 |
+
- Macro avg Support: 13279.0
|
36 |
+
- Weighted avg Precision: 0.7844
|
37 |
+
- Weighted avg Recall: 0.7815
|
38 |
+
- Weighted avg F1-score: 0.7815
|
39 |
+
- Weighted avg Support: 13279.0
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 16
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- training_steps: 2060
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | Accuracy F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support |
|
70 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|
|
71 |
+
| 0.6282 | 0.2005 | 413 | 0.6101 | 0.6848 | 0.7561 | 0.4991 | 0.6012 | 6322.0 | 0.6522 | 0.8537 | 0.7395 | 6957.0 | 0.6848 | 0.7041 | 0.6764 | 0.6704 | 13279.0 | 0.7016 | 0.6848 | 0.6737 | 13279.0 |
|
72 |
+
| 0.6569 | 1.2005 | 826 | 0.5357 | 0.7290 | 0.7392 | 0.6655 | 0.7004 | 6322.0 | 0.7213 | 0.7867 | 0.7526 | 6957.0 | 0.7290 | 0.7303 | 0.7261 | 0.7265 | 13279.0 | 0.7298 | 0.7290 | 0.7277 | 13279.0 |
|
73 |
+
| 0.5064 | 2.2005 | 1239 | 0.4839 | 0.7687 | 0.7517 | 0.7680 | 0.7597 | 6322.0 | 0.7849 | 0.7694 | 0.7771 | 6957.0 | 0.7687 | 0.7683 | 0.7687 | 0.7684 | 13279.0 | 0.7691 | 0.7687 | 0.7688 | 13279.0 |
|
74 |
+
| 0.4293 | 3.2005 | 1652 | 0.5120 | 0.7518 | 0.6850 | 0.8861 | 0.7727 | 6322.0 | 0.8589 | 0.6297 | 0.7267 | 6957.0 | 0.7518 | 0.7719 | 0.7579 | 0.7497 | 13279.0 | 0.7761 | 0.7518 | 0.7486 | 13279.0 |
|
75 |
+
| 0.421 | 4.1981 | 2060 | 0.4704 | 0.7815 | 0.7484 | 0.8149 | 0.7803 | 6322.0 | 0.8170 | 0.7510 | 0.7827 | 6957.0 | 0.7815 | 0.7827 | 0.7830 | 0.7815 | 13279.0 | 0.7844 | 0.7815 | 0.7815 | 13279.0 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.46.3
|
81 |
+
- Pytorch 2.0.0+cu117
|
82 |
+
- Datasets 3.1.0
|
83 |
+
- Tokenizers 0.20.3
|