SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KatjaK/gnd_retriever_full")
# Run inference
sentences = [
'Das Silberkomplott',
'Manipulation',
'Vergangenheitsbewältigung',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2744, 0.1445],
# [0.2744, 1.0000, 0.0990],
# [0.1445, 0.0990, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,627,253 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 20.23 tokens
- max: 74 tokens
- min: 3 tokens
- mean: 5.24 tokens
- max: 20 tokens
- Samples:
anchor positive Technikphilosophie zur Einführung
Technikphilosophie
Anreizsysteme zur Steuerung der Hersteller-Händler-Beziehung in der Automobilindustrie
Kraftfahrzeugindustrie
Anreizsysteme zur Steuerung der Hersteller-Händler-Beziehung in der Automobilindustrie
Beziehungsmanagement
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,203 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 22.29 tokens
- max: 81 tokens
- min: 3 tokens
- mean: 6.16 tokens
- max: 26 tokens
- Samples:
anchor positive Synökologische Studien zum simultanen Befall von Winterweizen (Triticum aestivum L.) mit Aphiden und getreidepathogenen Pilzen
Ernteertrag
Synökologische Studien zum simultanen Befall von Winterweizen (Triticum aestivum L.) mit Aphiden und getreidepathogenen Pilzen
Phytopathogene Pilze
Synökologische Studien zum simultanen Befall von Winterweizen (Triticum aestivum L.) mit Aphiden und getreidepathogenen Pilzen
Winterweizen
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-05num_train_epochs
: 2
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0061 | 500 | 1.1036 | - |
0.0122 | 1000 | 1.0041 | 1.0189 |
0.0183 | 1500 | 0.945 | - |
0.0244 | 2000 | 0.9385 | 0.9852 |
0.0304 | 2500 | 0.9184 | - |
0.0365 | 3000 | 0.8971 | 0.9426 |
0.0426 | 3500 | 0.8749 | - |
0.0487 | 4000 | 0.8655 | 0.9245 |
0.0548 | 4500 | 0.8616 | - |
0.0609 | 5000 | 0.8459 | 0.9042 |
0.0670 | 5500 | 0.8372 | - |
0.0731 | 6000 | 0.8311 | 0.9032 |
0.0792 | 6500 | 0.8385 | - |
0.0853 | 7000 | 0.8295 | 0.8817 |
0.0913 | 7500 | 0.824 | - |
0.0974 | 8000 | 0.8309 | 0.8769 |
0.1035 | 8500 | 0.8093 | - |
0.1096 | 9000 | 0.8038 | 0.8593 |
0.1157 | 9500 | 0.7933 | - |
0.1218 | 10000 | 0.7978 | 0.8567 |
0.1279 | 10500 | 0.7832 | - |
0.1340 | 11000 | 0.7789 | 0.8536 |
0.1401 | 11500 | 0.784 | - |
0.1462 | 12000 | 0.783 | 0.8428 |
0.1522 | 12500 | 0.7695 | - |
0.1583 | 13000 | 0.7805 | 0.8412 |
0.1644 | 13500 | 0.7727 | - |
0.1705 | 14000 | 0.7642 | 0.8276 |
0.1766 | 14500 | 0.7578 | - |
0.1827 | 15000 | 0.7555 | 0.8285 |
0.1888 | 15500 | 0.759 | - |
0.1949 | 16000 | 0.7464 | 0.8125 |
0.2010 | 16500 | 0.7317 | - |
0.2071 | 17000 | 0.7341 | 0.8087 |
0.2131 | 17500 | 0.7564 | - |
0.2192 | 18000 | 0.7329 | 0.8105 |
0.2253 | 18500 | 0.7266 | - |
0.2314 | 19000 | 0.7404 | 0.8094 |
0.2375 | 19500 | 0.7334 | - |
0.2436 | 20000 | 0.7436 | 0.8065 |
0.2497 | 20500 | 0.7453 | - |
0.2558 | 21000 | 0.7201 | 0.7896 |
0.2619 | 21500 | 0.7223 | - |
0.2680 | 22000 | 0.7183 | 0.7864 |
0.2740 | 22500 | 0.7097 | - |
0.2801 | 23000 | 0.7132 | 0.7980 |
0.2862 | 23500 | 0.7107 | - |
0.2923 | 24000 | 0.7217 | 0.7940 |
0.2984 | 24500 | 0.7019 | - |
0.3045 | 25000 | 0.7183 | 0.7903 |
0.3106 | 25500 | 0.6922 | - |
0.3167 | 26000 | 0.7096 | 0.7818 |
0.3228 | 26500 | 0.7062 | - |
0.3289 | 27000 | 0.7184 | 0.7869 |
0.3349 | 27500 | 0.7002 | - |
0.3410 | 28000 | 0.708 | 0.7813 |
0.3471 | 28500 | 0.7117 | - |
0.3532 | 29000 | 0.7128 | 0.7715 |
0.3593 | 29500 | 0.7046 | - |
0.3654 | 30000 | 0.6814 | 0.7755 |
0.3715 | 30500 | 0.6898 | - |
0.3776 | 31000 | 0.6773 | 0.7884 |
0.3837 | 31500 | 0.6991 | - |
0.3898 | 32000 | 0.703 | 0.7697 |
0.3958 | 32500 | 0.688 | - |
0.4019 | 33000 | 0.7101 | 0.7813 |
0.4080 | 33500 | 0.6873 | - |
0.4141 | 34000 | 0.6866 | 0.7658 |
0.4202 | 34500 | 0.6803 | - |
0.4263 | 35000 | 0.6748 | 0.7574 |
0.4324 | 35500 | 0.6844 | - |
0.4385 | 36000 | 0.6719 | 0.7483 |
0.4446 | 36500 | 0.6738 | - |
0.4507 | 37000 | 0.6798 | 0.7524 |
0.4567 | 37500 | 0.6834 | - |
0.4628 | 38000 | 0.6748 | 0.7434 |
0.4689 | 38500 | 0.6711 | - |
0.4750 | 39000 | 0.6748 | 0.7425 |
0.4811 | 39500 | 0.6813 | - |
0.4872 | 40000 | 0.6721 | 0.7470 |
0.4933 | 40500 | 0.6537 | - |
0.4994 | 41000 | 0.6783 | 0.7540 |
0.5055 | 41500 | 0.6691 | - |
0.5116 | 42000 | 0.6426 | 0.7547 |
0.5176 | 42500 | 0.6608 | - |
0.5237 | 43000 | 0.6612 | 0.7517 |
0.5298 | 43500 | 0.6551 | - |
0.5359 | 44000 | 0.6578 | 0.7391 |
0.5420 | 44500 | 0.6557 | - |
0.5481 | 45000 | 0.6421 | 0.7398 |
0.5542 | 45500 | 0.6672 | - |
0.5603 | 46000 | 0.6511 | 0.7325 |
0.5664 | 46500 | 0.6568 | - |
0.5725 | 47000 | 0.673 | 0.7238 |
0.5785 | 47500 | 0.6648 | - |
0.5846 | 48000 | 0.6465 | 0.7280 |
0.5907 | 48500 | 0.6683 | - |
0.5968 | 49000 | 0.6533 | 0.7261 |
0.6029 | 49500 | 0.661 | - |
0.6090 | 50000 | 0.647 | 0.7210 |
0.6151 | 50500 | 0.6554 | - |
0.6212 | 51000 | 0.6426 | 0.7165 |
0.6273 | 51500 | 0.6527 | - |
0.6334 | 52000 | 0.6427 | 0.7204 |
0.6394 | 52500 | 0.643 | - |
0.6455 | 53000 | 0.6528 | 0.7115 |
0.6516 | 53500 | 0.6266 | - |
0.6577 | 54000 | 0.6498 | 0.7143 |
0.6638 | 54500 | 0.6542 | - |
0.6699 | 55000 | 0.631 | 0.7141 |
0.6760 | 55500 | 0.6421 | - |
0.6821 | 56000 | 0.6457 | 0.7107 |
0.6882 | 56500 | 0.646 | - |
0.6943 | 57000 | 0.6483 | 0.7102 |
0.7003 | 57500 | 0.6531 | - |
0.7064 | 58000 | 0.6436 | 0.7127 |
0.7125 | 58500 | 0.6177 | - |
0.7186 | 59000 | 0.635 | 0.7073 |
0.7247 | 59500 | 0.6388 | - |
0.7308 | 60000 | 0.6205 | 0.7067 |
0.7369 | 60500 | 0.6121 | - |
0.7430 | 61000 | 0.6337 | 0.7020 |
0.7491 | 61500 | 0.6239 | - |
0.7552 | 62000 | 0.6306 | 0.7058 |
0.7612 | 62500 | 0.6188 | - |
0.7673 | 63000 | 0.6152 | 0.7022 |
0.7734 | 63500 | 0.6255 | - |
0.7795 | 64000 | 0.6115 | 0.7012 |
0.7856 | 64500 | 0.6536 | - |
0.7917 | 65000 | 0.6188 | 0.6899 |
0.7978 | 65500 | 0.6255 | - |
0.8039 | 66000 | 0.6182 | 0.6920 |
0.8100 | 66500 | 0.6278 | - |
0.8161 | 67000 | 0.6204 | 0.6921 |
0.8221 | 67500 | 0.6281 | - |
0.8282 | 68000 | 0.6265 | 0.6890 |
0.8343 | 68500 | 0.624 | - |
0.8404 | 69000 | 0.6067 | 0.6973 |
0.8465 | 69500 | 0.6199 | - |
0.8526 | 70000 | 0.6195 | 0.6841 |
0.8587 | 70500 | 0.6272 | - |
0.8648 | 71000 | 0.6224 | 0.6851 |
0.8709 | 71500 | 0.6326 | - |
0.8770 | 72000 | 0.607 | 0.6747 |
0.8830 | 72500 | 0.612 | - |
0.8891 | 73000 | 0.6187 | 0.6717 |
0.8952 | 73500 | 0.6094 | - |
0.9013 | 74000 | 0.6112 | 0.6811 |
0.9074 | 74500 | 0.6212 | - |
0.9135 | 75000 | 0.5992 | 0.6767 |
0.9196 | 75500 | 0.6206 | - |
0.9257 | 76000 | 0.6099 | 0.6853 |
0.9318 | 76500 | 0.6108 | - |
0.9379 | 77000 | 0.6037 | 0.6767 |
0.9439 | 77500 | 0.6055 | - |
0.9500 | 78000 | 0.5952 | 0.6811 |
0.9561 | 78500 | 0.5947 | - |
0.9622 | 79000 | 0.6082 | 0.6704 |
0.9683 | 79500 | 0.6037 | - |
0.9744 | 80000 | 0.604 | 0.6717 |
0.9805 | 80500 | 0.6034 | - |
0.9866 | 81000 | 0.6034 | 0.6776 |
0.9927 | 81500 | 0.5965 | - |
0.9988 | 82000 | 0.6094 | 0.6748 |
1.0048 | 82500 | 0.5564 | - |
1.0109 | 83000 | 0.5471 | 0.6782 |
1.0170 | 83500 | 0.5518 | - |
1.0231 | 84000 | 0.5467 | 0.6738 |
1.0292 | 84500 | 0.5582 | - |
1.0353 | 85000 | 0.5394 | 0.6714 |
1.0414 | 85500 | 0.5395 | - |
1.0475 | 86000 | 0.5561 | 0.6668 |
1.0536 | 86500 | 0.5438 | - |
1.0597 | 87000 | 0.5488 | 0.6615 |
1.0657 | 87500 | 0.5347 | - |
1.0718 | 88000 | 0.5331 | 0.6616 |
1.0779 | 88500 | 0.5454 | - |
1.0840 | 89000 | 0.5442 | 0.6622 |
1.0901 | 89500 | 0.5535 | - |
1.0962 | 90000 | 0.5321 | 0.6612 |
1.1023 | 90500 | 0.5432 | - |
1.1084 | 91000 | 0.5418 | 0.6635 |
1.1145 | 91500 | 0.5308 | - |
1.1206 | 92000 | 0.5555 | 0.6514 |
1.1266 | 92500 | 0.5342 | - |
1.1327 | 93000 | 0.5321 | 0.6592 |
1.1388 | 93500 | 0.5482 | - |
1.1449 | 94000 | 0.5275 | 0.6525 |
1.1510 | 94500 | 0.5478 | - |
1.1571 | 95000 | 0.5343 | 0.6516 |
1.1632 | 95500 | 0.5391 | - |
1.1693 | 96000 | 0.5403 | 0.6463 |
1.1754 | 96500 | 0.5293 | - |
1.1815 | 97000 | 0.5375 | 0.6542 |
1.1875 | 97500 | 0.5463 | - |
1.1936 | 98000 | 0.529 | 0.6528 |
1.1997 | 98500 | 0.5377 | - |
1.2058 | 99000 | 0.5329 | 0.6534 |
1.2119 | 99500 | 0.5572 | - |
1.2180 | 100000 | 0.5323 | 0.6532 |
1.2241 | 100500 | 0.5323 | - |
1.2302 | 101000 | 0.5412 | 0.6651 |
1.2363 | 101500 | 0.546 | - |
1.2424 | 102000 | 0.5367 | 0.6606 |
1.2484 | 102500 | 0.5371 | - |
1.2545 | 103000 | 0.5369 | 0.6571 |
1.2606 | 103500 | 0.5331 | - |
1.2667 | 104000 | 0.5362 | 0.6483 |
1.2728 | 104500 | 0.532 | - |
1.2789 | 105000 | 0.5405 | 0.6535 |
1.2850 | 105500 | 0.5205 | - |
1.2911 | 106000 | 0.5378 | 0.6550 |
1.2972 | 106500 | 0.5392 | - |
1.3033 | 107000 | 0.5261 | 0.6504 |
1.3093 | 107500 | 0.533 | - |
1.3154 | 108000 | 0.5384 | 0.6575 |
1.3215 | 108500 | 0.5239 | - |
1.3276 | 109000 | 0.5311 | 0.6509 |
1.3337 | 109500 | 0.5288 | - |
1.3398 | 110000 | 0.5253 | 0.6550 |
1.3459 | 110500 | 0.5305 | - |
1.3520 | 111000 | 0.507 | 0.6527 |
1.3581 | 111500 | 0.5217 | - |
1.3642 | 112000 | 0.541 | 0.6499 |
1.3702 | 112500 | 0.5226 | - |
1.3763 | 113000 | 0.5337 | 0.6497 |
1.3824 | 113500 | 0.5275 | - |
1.3885 | 114000 | 0.538 | 0.6495 |
1.3946 | 114500 | 0.5209 | - |
1.4007 | 115000 | 0.5345 | 0.6466 |
1.4068 | 115500 | 0.5355 | - |
1.4129 | 116000 | 0.5451 | 0.6465 |
1.4190 | 116500 | 0.5125 | - |
1.4251 | 117000 | 0.5345 | 0.6463 |
1.4311 | 117500 | 0.5119 | - |
1.4372 | 118000 | 0.5165 | 0.6444 |
1.4433 | 118500 | 0.5189 | - |
1.4494 | 119000 | 0.537 | 0.6451 |
1.4555 | 119500 | 0.5273 | - |
1.4616 | 120000 | 0.5187 | 0.6447 |
1.4677 | 120500 | 0.536 | - |
1.4738 | 121000 | 0.5301 | 0.6406 |
1.4799 | 121500 | 0.5291 | - |
1.4860 | 122000 | 0.5211 | 0.6359 |
1.4920 | 122500 | 0.5175 | - |
1.4981 | 123000 | 0.5341 | 0.6300 |
1.5042 | 123500 | 0.5227 | - |
1.5103 | 124000 | 0.517 | 0.6311 |
1.5164 | 124500 | 0.5062 | - |
1.5225 | 125000 | 0.5127 | 0.6346 |
1.5286 | 125500 | 0.535 | - |
1.5347 | 126000 | 0.5159 | 0.6302 |
1.5408 | 126500 | 0.5301 | - |
1.5469 | 127000 | 0.5197 | 0.6301 |
1.5529 | 127500 | 0.5195 | - |
1.5590 | 128000 | 0.5197 | 0.6274 |
1.5651 | 128500 | 0.5205 | - |
1.5712 | 129000 | 0.5141 | 0.6268 |
1.5773 | 129500 | 0.5255 | - |
1.5834 | 130000 | 0.517 | 0.6226 |
1.5895 | 130500 | 0.5204 | - |
1.5956 | 131000 | 0.527 | 0.6200 |
1.6017 | 131500 | 0.5233 | - |
1.6078 | 132000 | 0.5211 | 0.6229 |
1.6138 | 132500 | 0.5083 | - |
1.6199 | 133000 | 0.517 | 0.6215 |
1.6260 | 133500 | 0.5192 | - |
1.6321 | 134000 | 0.5114 | 0.6244 |
1.6382 | 134500 | 0.5147 | - |
1.6443 | 135000 | 0.5197 | 0.6247 |
1.6504 | 135500 | 0.5212 | - |
1.6565 | 136000 | 0.5234 | 0.6252 |
1.6626 | 136500 | 0.5269 | - |
1.6687 | 137000 | 0.5144 | 0.6223 |
1.6747 | 137500 | 0.509 | - |
1.6808 | 138000 | 0.5164 | 0.6194 |
1.6869 | 138500 | 0.5196 | - |
1.6930 | 139000 | 0.5101 | 0.6202 |
1.6991 | 139500 | 0.5192 | - |
1.7052 | 140000 | 0.5083 | 0.6195 |
1.7113 | 140500 | 0.512 | - |
1.7174 | 141000 | 0.504 | 0.6232 |
1.7235 | 141500 | 0.5175 | - |
1.7296 | 142000 | 0.5149 | 0.6221 |
1.7356 | 142500 | 0.5167 | - |
1.7417 | 143000 | 0.5168 | 0.6197 |
1.7478 | 143500 | 0.51 | - |
1.7539 | 144000 | 0.5107 | 0.6176 |
1.7600 | 144500 | 0.5005 | - |
1.7661 | 145000 | 0.5058 | 0.6195 |
1.7722 | 145500 | 0.5062 | - |
1.7783 | 146000 | 0.5032 | 0.6168 |
1.7844 | 146500 | 0.5311 | - |
1.7905 | 147000 | 0.5016 | 0.6173 |
1.7965 | 147500 | 0.5205 | - |
1.8026 | 148000 | 0.4971 | 0.6163 |
1.8087 | 148500 | 0.5121 | - |
1.8148 | 149000 | 0.5188 | 0.6145 |
1.8209 | 149500 | 0.5077 | - |
1.8270 | 150000 | 0.5213 | 0.6146 |
1.8331 | 150500 | 0.5133 | - |
1.8392 | 151000 | 0.5071 | 0.6118 |
1.8453 | 151500 | 0.5097 | - |
1.8514 | 152000 | 0.5151 | 0.6123 |
1.8574 | 152500 | 0.5158 | - |
1.8635 | 153000 | 0.5124 | 0.6130 |
1.8696 | 153500 | 0.5042 | - |
1.8757 | 154000 | 0.498 | 0.6138 |
1.8818 | 154500 | 0.5159 | - |
1.8879 | 155000 | 0.5023 | 0.6127 |
1.8940 | 155500 | 0.5031 | - |
1.9001 | 156000 | 0.4981 | 0.6140 |
1.9062 | 156500 | 0.5078 | - |
1.9123 | 157000 | 0.507 | 0.6144 |
1.9183 | 157500 | 0.4967 | - |
1.9244 | 158000 | 0.5215 | 0.6127 |
1.9305 | 158500 | 0.5104 | - |
1.9366 | 159000 | 0.5171 | 0.6134 |
1.9427 | 159500 | 0.512 | - |
1.9488 | 160000 | 0.5088 | 0.6122 |
1.9549 | 160500 | 0.4961 | - |
1.9610 | 161000 | 0.5056 | 0.6119 |
1.9671 | 161500 | 0.508 | - |
1.9732 | 162000 | 0.5119 | 0.6121 |
1.9792 | 162500 | 0.5002 | - |
1.9853 | 163000 | 0.51 | 0.6119 |
1.9914 | 163500 | 0.4835 | - |
1.9975 | 164000 | 0.5014 | 0.6118 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.0.0
- Transformers: 4.53.0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for KatjaK/gnd_retriever_full
Base model
BAAI/bge-m3