xlnet-fine-tuned-matching
This model is a fine-tuned version of xlnet/xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3020
- Precision: 0.8308
- Recall: 0.6207
- F1: 0.7105
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.404 | 1.0 | 185 | 0.2996 | 0.6829 | 0.3218 | 0.4375 |
0.2827 | 2.0 | 370 | 0.2278 | 0.8144 | 0.6054 | 0.6945 |
0.2288 | 3.0 | 555 | 0.2090 | 0.815 | 0.6245 | 0.7072 |
0.1982 | 4.0 | 740 | 0.2250 | 0.7920 | 0.6858 | 0.7351 |
0.18 | 5.0 | 925 | 0.2729 | 0.8812 | 0.5402 | 0.6698 |
0.1703 | 6.0 | 1110 | 0.3118 | 0.8867 | 0.5096 | 0.6472 |
0.1604 | 7.0 | 1295 | 0.2985 | 0.8696 | 0.6130 | 0.7191 |
0.1522 | 8.0 | 1480 | 0.2928 | 0.8402 | 0.6245 | 0.7165 |
0.149 | 9.0 | 1665 | 0.2910 | 0.8168 | 0.6322 | 0.7127 |
0.1375 | 10.0 | 1850 | 0.3020 | 0.8308 | 0.6207 | 0.7105 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kenazin/xlnet-fine-tuned-matching
Base model
xlnet/xlnet-base-cased