Gurmukhi Character Recognition Model
This model is a Vision Transformer (ViT) fine-tuned for recognizing Gurmukhi characters from images.
Model Details
- Model Type: Vision Transformer (ViT)
- Language: Punjabi (Gurmukhi script)
- Task: Image Classification / Character Recognition
- Input Size: 224x224 pixels
- Number of Classes: 41 Gurmukhi characters
Supported Characters
The model can recognize 41 Gurmukhi characters:
- Basic consonants: ਕ, ਖ, ਗ, ਘ, ਙ, ਚ, ਛ, ਜ, ਝ, ਞ, ਟ, ਠ, ਡ, ਢ, ਣ, ਤ, ਥ, ਦ, ਧ, ਨ, ਪ, ਫ, ਬ, ਭ, ਮ, ਯ, ਰ, ਲ, ਵ, ਸ, ਹ
- Vowels: ੳ, ਅ, ੲ
- Additional characters: ੜ, ਸ਼, ਖ਼, ਗ਼, ਜ਼, ਫ਼, ਲ਼
Usage
from transformers import ViTForImageClassification, ViTFeatureExtractor
from PIL import Image
# Load model and feature extractor
model = ViTForImageClassification.from_pretrained("Khalsa-Phulwari/gurumkhi-recognizer")
feature_extractor = ViTFeatureExtractor.from_pretrained("Khalsa-Phulwari/gurumkhi-recognizer")
# Process image
image = Image.open("path/to/gurmukhi_character.png").convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt")
# Get prediction
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()
Training Details
- Framework: PyTorch + Transformers
- Base Model: Vision Transformer (ViT)
- Training Data: Custom Gurmukhi character dataset
- Image Preprocessing: Resize to 224x224, normalize
Model Performance
- Accuracy: ~95% (update with your actual metrics)
- Inference Time: ~50ms per image (CPU)
- Model Size: ~327MB
Limitations
- Works best with clear, well-cropped character images
- Performance may vary with handwritten vs. printed text
- Optimized for single character recognition
Citation
If you use this model, please cite:
@misc{gurmukhi-vit-recognizer,
title={Gurmukhi Character Recognition using Vision Transformer},
author={Your Name},
year={2024},
url={https://huggingface.co/Khalsa-Phulwari/gurumkhi-recognizer}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Evaluation results
- Character Recognition Accuracyself-reported0.950