abte-restaurants-conv1d

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4207
  • F1-score: 0.4809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss F1-score
1.049 1.0 8 0.9959 0.1132
0.9836 2.0 16 0.9339 0.1441
0.9196 3.0 24 0.8801 0.1973
0.8701 4.0 32 0.8333 0.2290
0.8317 5.0 40 0.7927 0.2480
0.7934 6.0 48 0.7575 0.2669
0.7613 7.0 56 0.7267 0.2716
0.7252 8.0 64 0.6998 0.2727
0.7041 9.0 72 0.6765 0.2805
0.673 10.0 80 0.6561 0.2878
0.6481 11.0 88 0.6383 0.2995
0.6288 12.0 96 0.6227 0.3047
0.6111 13.0 104 0.6088 0.3062
0.6028 14.0 112 0.5963 0.3146
0.5846 15.0 120 0.5849 0.3222
0.572 16.0 128 0.5748 0.3228
0.5626 17.0 136 0.5658 0.3247
0.553 18.0 144 0.5574 0.3379
0.5337 19.0 152 0.5495 0.3445
0.5267 20.0 160 0.5422 0.3517
0.5284 21.0 168 0.5353 0.3531
0.5182 22.0 176 0.5289 0.3588
0.5141 23.0 184 0.5228 0.3611
0.4954 24.0 192 0.5170 0.3630
0.4907 25.0 200 0.5117 0.3664
0.4872 26.0 208 0.5069 0.3689
0.4809 27.0 216 0.5028 0.3771
0.4759 28.0 224 0.4987 0.3828
0.4755 29.0 232 0.4947 0.3885
0.4619 30.0 240 0.4911 0.3880
0.4581 31.0 248 0.4879 0.3889
0.4489 32.0 256 0.4845 0.3901
0.448 33.0 264 0.4811 0.3941
0.4459 34.0 272 0.4782 0.3965
0.442 35.0 280 0.4753 0.3976
0.4414 36.0 288 0.4724 0.3996
0.4237 37.0 296 0.4696 0.4047
0.4302 38.0 304 0.4670 0.4075
0.4203 39.0 312 0.4643 0.4105
0.4231 40.0 320 0.4618 0.4168
0.4214 41.0 328 0.4598 0.4191
0.4174 42.0 336 0.4583 0.4202
0.4121 43.0 344 0.4568 0.4244
0.4074 44.0 352 0.4548 0.4277
0.4009 45.0 360 0.4530 0.4322
0.3963 46.0 368 0.4513 0.4331
0.4023 47.0 376 0.4498 0.4342
0.4058 48.0 384 0.4483 0.4393
0.3866 49.0 392 0.4464 0.4398
0.3924 50.0 400 0.4450 0.4428
0.384 51.0 408 0.4439 0.4449
0.3905 52.0 416 0.4428 0.4475
0.3792 53.0 424 0.4417 0.4471
0.3737 54.0 432 0.4408 0.4463
0.3747 55.0 440 0.4399 0.4471
0.3769 56.0 448 0.4391 0.4479
0.3676 57.0 456 0.4383 0.4491
0.3701 58.0 464 0.4374 0.4494
0.3739 59.0 472 0.4366 0.4525
0.3693 60.0 480 0.4359 0.4592
0.3673 61.0 488 0.4349 0.4596
0.3634 62.0 496 0.4338 0.4647
0.356 63.0 504 0.4327 0.4687
0.3611 64.0 512 0.4319 0.4691
0.3565 65.0 520 0.4312 0.4694
0.356 66.0 528 0.4305 0.4729
0.3572 67.0 536 0.4297 0.4761
0.351 68.0 544 0.4289 0.4752
0.3485 69.0 552 0.4282 0.4761
0.3548 70.0 560 0.4278 0.4755
0.3509 71.0 568 0.4272 0.4757
0.3566 72.0 576 0.4267 0.4772
0.3428 73.0 584 0.4262 0.4767
0.3491 74.0 592 0.4259 0.4760
0.3378 75.0 600 0.4257 0.4760
0.3524 76.0 608 0.4255 0.4766
0.3596 77.0 616 0.4252 0.4772
0.3431 78.0 624 0.4248 0.4770
0.3645 79.0 632 0.4242 0.4760
0.3455 80.0 640 0.4236 0.4756
0.3435 81.0 648 0.4233 0.4759
0.3467 82.0 656 0.4229 0.4768
0.3403 83.0 664 0.4227 0.4778
0.3455 84.0 672 0.4224 0.4789
0.3415 85.0 680 0.4221 0.4787
0.3406 86.0 688 0.4219 0.4784
0.3378 87.0 696 0.4217 0.4791
0.3441 88.0 704 0.4215 0.4795
0.3389 89.0 712 0.4214 0.4795
0.3425 90.0 720 0.4213 0.4798
0.3412 91.0 728 0.4213 0.4799
0.3328 92.0 736 0.4211 0.4799
0.3392 93.0 744 0.4210 0.4799
0.3419 94.0 752 0.4209 0.4799
0.3297 95.0 760 0.4208 0.4799
0.3371 96.0 768 0.4208 0.4803
0.3358 97.0 776 0.4207 0.4803
0.3295 98.0 784 0.4207 0.4803
0.3405 99.0 792 0.4207 0.4809
0.3338 100.0 800 0.4207 0.4809

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
1.17M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support