abte-restaurants-lstm

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4099
  • F1-score: 0.5148

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss F1-score
1.0573 1.0 8 0.9615 0.1989
0.9191 2.0 16 0.8449 0.2300
0.8101 3.0 24 0.7552 0.2088
0.7196 4.0 32 0.6882 0.1698
0.6586 5.0 40 0.6394 0.1228
0.5985 6.0 48 0.6045 0.1066
0.5498 7.0 56 0.5796 0.1183
0.5097 8.0 64 0.5627 0.1419
0.5015 9.0 72 0.5508 0.1808
0.4727 10.0 80 0.5408 0.2222
0.4533 11.0 88 0.5324 0.2581
0.4421 12.0 96 0.5252 0.2852
0.4268 13.0 104 0.5187 0.3074
0.4193 14.0 112 0.5135 0.3224
0.4214 15.0 120 0.5084 0.3212
0.4113 16.0 128 0.5040 0.3290
0.4012 17.0 136 0.5001 0.3365
0.397 18.0 144 0.4965 0.3454
0.374 19.0 152 0.4929 0.3518
0.3881 20.0 160 0.4896 0.3569
0.3929 21.0 168 0.4860 0.3671
0.381 22.0 176 0.4823 0.3775
0.3842 23.0 184 0.4785 0.3819
0.3674 24.0 192 0.4753 0.3936
0.3664 25.0 200 0.4727 0.3952
0.3627 26.0 208 0.4701 0.4013
0.3595 27.0 216 0.4679 0.4024
0.358 28.0 224 0.4654 0.4065
0.3687 29.0 232 0.4628 0.4125
0.3517 30.0 240 0.4606 0.4170
0.349 31.0 248 0.4593 0.4229
0.3447 32.0 256 0.4580 0.4354
0.3407 33.0 264 0.4559 0.4382
0.3413 34.0 272 0.4544 0.4392
0.3516 35.0 280 0.4521 0.4469
0.3475 36.0 288 0.4491 0.4569
0.3273 37.0 296 0.4459 0.4571
0.3333 38.0 304 0.4440 0.4593
0.325 39.0 312 0.4423 0.4615
0.3357 40.0 320 0.4408 0.4637
0.3259 41.0 328 0.4396 0.4628
0.3274 42.0 336 0.4394 0.4667
0.3281 43.0 344 0.4389 0.4665
0.3222 44.0 352 0.4373 0.4635
0.3177 45.0 360 0.4358 0.4681
0.3164 46.0 368 0.4346 0.4715
0.3163 47.0 376 0.4333 0.4748
0.3189 48.0 384 0.4319 0.4759
0.3058 49.0 392 0.4301 0.4777
0.3111 50.0 400 0.4290 0.4784
0.3066 51.0 408 0.4288 0.4791
0.3158 52.0 416 0.4281 0.4802
0.3041 53.0 424 0.4273 0.4807
0.2957 54.0 432 0.4268 0.4822
0.2976 55.0 440 0.4263 0.4812
0.2962 56.0 448 0.4262 0.4833
0.297 57.0 456 0.4257 0.4851
0.294 58.0 464 0.4249 0.4882
0.2937 59.0 472 0.4243 0.4900
0.2972 60.0 480 0.4239 0.4906
0.2982 61.0 488 0.4227 0.4907
0.2919 62.0 496 0.4214 0.4907
0.2906 63.0 504 0.4207 0.4940
0.2946 64.0 512 0.4203 0.4937
0.2929 65.0 520 0.4198 0.4916
0.2926 66.0 528 0.4193 0.4932
0.2889 67.0 536 0.4188 0.4929
0.2837 68.0 544 0.4183 0.4930
0.2852 69.0 552 0.4181 0.4940
0.2863 70.0 560 0.4181 0.4959
0.2893 71.0 568 0.4177 0.4969
0.2945 72.0 576 0.4168 0.4979
0.2785 73.0 584 0.4161 0.4971
0.28 74.0 592 0.4157 0.4998
0.2781 75.0 600 0.4156 0.4989
0.2834 76.0 608 0.4157 0.4999
0.2967 77.0 616 0.4154 0.5003
0.2852 78.0 624 0.4146 0.5033
0.2961 79.0 632 0.4138 0.5039
0.2804 80.0 640 0.4130 0.5049
0.286 81.0 648 0.4127 0.5068
0.2829 82.0 656 0.4124 0.5077
0.2794 83.0 664 0.4120 0.5117
0.2813 84.0 672 0.4117 0.5101
0.282 85.0 680 0.4113 0.5127
0.2765 86.0 688 0.4110 0.5130
0.2802 87.0 696 0.4110 0.5127
0.2847 88.0 704 0.4108 0.5127
0.2804 89.0 712 0.4106 0.5133
0.2788 90.0 720 0.4105 0.5145
0.2785 91.0 728 0.4104 0.5145
0.2792 92.0 736 0.4103 0.5148
0.2836 93.0 744 0.4101 0.5148
0.279 94.0 752 0.4099 0.5148
0.2722 95.0 760 0.4099 0.5148
0.2794 96.0 768 0.4098 0.5148
0.2761 97.0 776 0.4098 0.5148
0.2709 98.0 784 0.4099 0.5148
0.2794 99.0 792 0.4099 0.5148
0.2728 100.0 800 0.4099 0.5148

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
2.06M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support