rtdetr-v2-r50-kitti2-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.8052
  • Map: 0.3423
  • Map 50: 0.5623
  • Map 75: 0.3606
  • Map Small: 0.2161
  • Map Medium: 0.3631
  • Map Large: 0.4172
  • Mar 1: 0.2926
  • Mar 10: 0.5137
  • Mar 100: 0.5886
  • Mar Small: 0.4156
  • Mar Medium: 0.5976
  • Mar Large: 0.6841
  • Map Car: 0.6052
  • Mar 100 Car: 0.7464
  • Map Pedestrian: 0.3483
  • Mar 100 Pedestrian: 0.5172
  • Map Cyclist: 0.2062
  • Mar 100 Cyclist: 0.4523
  • Map Van: 0.5231
  • Mar 100 Van: 0.7377
  • Map Truck: 0.6026
  • Mar 100 Truck: 0.7417
  • Map Misc: 0.1678
  • Mar 100 Misc: 0.516
  • Map Tram: 0.3851
  • Mar 100 Tram: 0.6984
  • Map Person Sitting: 0.1978
  • Mar 100 Person Sitting: 0.5314
  • Map Dontcare: 0.0442
  • Mar 100 Dontcare: 0.3566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Car Mar 100 Car Map Pedestrian Mar 100 Pedestrian Map Cyclist Mar 100 Cyclist Map Van Mar 100 Van Map Truck Mar 100 Truck Map Misc Mar 100 Misc Map Tram Mar 100 Tram Map Person Sitting Mar 100 Person Sitting Map Dontcare Mar 100 Dontcare
34.3989 1.0 655 10.4608 0.2538 0.4309 0.2527 0.1757 0.2643 0.3546 0.2566 0.4571 0.5322 0.3842 0.5368 0.6569 0.6141 0.743 0.2816 0.4418 0.1456 0.4579 0.4092 0.6612 0.4751 0.7195 0.0566 0.4101 0.133 0.6307 0.1334 0.4357 0.0356 0.2902
15.6516 2.0 1310 10.8110 0.3342 0.5511 0.3468 0.2589 0.3513 0.4378 0.2863 0.5125 0.5775 0.4382 0.5818 0.7005 0.6159 0.7491 0.3197 0.4894 0.249 0.4594 0.4919 0.6995 0.6118 0.7552 0.1736 0.502 0.3949 0.7102 0.1077 0.4786 0.0433 0.354
14.1316 3.0 1965 11.9174 0.3267 0.5128 0.3591 0.2156 0.3255 0.4735 0.2828 0.5065 0.5748 0.4402 0.5811 0.7018 0.5899 0.7322 0.3121 0.4754 0.2163 0.4766 0.4165 0.6865 0.5878 0.7526 0.1879 0.5507 0.429 0.6807 0.1537 0.45 0.0474 0.3687
12.9222 4.0 2620 12.5913 0.3124 0.4931 0.3376 0.2457 0.3275 0.46 0.279 0.4928 0.5516 0.4054 0.5606 0.688 0.5478 0.7176 0.2902 0.4381 0.13 0.413 0.4401 0.6785 0.5964 0.7468 0.2421 0.5601 0.4089 0.7057 0.108 0.3429 0.0482 0.3613
12.6036 5.0 3275 13.0327 0.3117 0.4742 0.3476 0.2483 0.3282 0.4539 0.2901 0.4865 0.5418 0.4431 0.5536 0.6582 0.5549 0.7381 0.292 0.4435 0.1428 0.3874 0.4093 0.6968 0.5729 0.7494 0.2757 0.6088 0.4991 0.6989 0.0056 0.1714 0.0528 0.3825
12.2062 6.0 3930 13.2957 0.3151 0.4824 0.3456 0.2292 0.3166 0.465 0.2908 0.4839 0.5362 0.4192 0.5437 0.663 0.5304 0.7357 0.2899 0.4352 0.1494 0.3556 0.4531 0.6872 0.5778 0.7442 0.3199 0.598 0.4628 0.7034 0.004 0.1714 0.0491 0.3949
11.847 7.0 4585 13.1970 0.309 0.4753 0.3435 0.2333 0.3199 0.4422 0.2983 0.4868 0.5398 0.4161 0.5544 0.6635 0.5359 0.7321 0.2909 0.4272 0.099 0.359 0.4248 0.6806 0.5835 0.7247 0.2946 0.6203 0.4941 0.7102 0.0087 0.2214 0.0495 0.3826

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for KingRam/rtdetr-v2-r50-kitti2-finetune-2

Finetuned
(4)
this model