sample use
以下は"elyza-tasks-100-TV_0.jsonl"を回答するための、サンプルです。
from unsloth import FastLanguageModel
import torch
import json
from tqdm import tqdm
print("モデルの読み込み開始---")
model_name = "KokiMaruyama/01_llm-jp-3-13b-it"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = "",
)
FastLanguageModel.for_inference(model)
print("データセットの読み込み---")
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
data = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
data.append(json.loads(item))
item = ""
# 推論
print("推論---")
results = []
for dt in tqdm(data):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# 出力
print("出力---")
with open(f"/content/output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
About Model
- Use "llm-jp/llm-jp-3-13b" as the base model.
- Uploaded model was fine-tuned using the "https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/".
Uploaded model
- Developed by: KokiMaruyama
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for KokiMaruyama/01_llm-jp-3-13b-it
Base model
llm-jp/llm-jp-3-13b