bert-lora-for-author-profiling

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7931
  • Age Acc: 0.5827
  • Age Precision: 0.5537
  • Age Recall: 0.5827
  • Age F1: 0.5258
  • Age Precision Macro: 0.5152
  • Age Recall Macro: 0.2723
  • Age F1 Macro: 0.2861
  • Gender Acc: 0.6949
  • Gender Precision: 0.6949
  • Gender Recall: 0.6949
  • Gender F1: 0.6949
  • Gender Precision Macro: 0.6948
  • Gender Recall Macro: 0.6949
  • Gender F1 Macro: 0.6948
  • Joint Acc: 0.4110
  • Avg Acc: 0.6388
  • Avg Precision: 0.6243
  • Avg Recall: 0.6388
  • Avg F1: 0.6104
  • Avg Precision Macro: 0.6050
  • Avg Recall Macro: 0.4836
  • Avg F1 Macro: 0.4905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9.7145e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Age Acc Age Precision Age Recall Age F1 Age Precision Macro Age Recall Macro Age F1 Macro Gender Acc Gender Precision Gender Recall Gender F1 Gender Precision Macro Gender Recall Macro Gender F1 Macro Joint Acc Avg Acc Avg Precision Avg Recall Avg F1 Avg Precision Macro Avg Recall Macro Avg F1 Macro
0.8387 0.5155 5000 0.8252 0.5643 0.5195 0.5643 0.5035 0.4352 0.2432 0.2445 0.6811 0.6813 0.6811 0.6811 0.6812 0.6812 0.6811 0.3875 0.6227 0.6004 0.6227 0.5923 0.5582 0.4622 0.4628
0.816 1.0309 10000 0.8115 0.5727 0.5435 0.5727 0.5103 0.4579 0.2526 0.2578 0.6850 0.6857 0.6850 0.6849 0.6855 0.6853 0.6850 0.3961 0.6289 0.6146 0.6289 0.5976 0.5717 0.4690 0.4714
0.8083 1.5464 15000 0.8012 0.5792 0.5481 0.5792 0.5215 0.5131 0.2669 0.2773 0.6901 0.6904 0.6901 0.6901 0.6903 0.6903 0.6901 0.4052 0.6346 0.6193 0.6346 0.6058 0.6017 0.4786 0.4837
0.806 2.0619 20000 0.7962 0.5810 0.5539 0.5810 0.5224 0.5235 0.2680 0.2803 0.6930 0.6932 0.6930 0.6930 0.6930 0.6931 0.6930 0.4083 0.6370 0.6236 0.6370 0.6077 0.6083 0.4805 0.4866
0.7999 2.5773 25000 0.7931 0.5827 0.5537 0.5827 0.5258 0.5152 0.2723 0.2861 0.6949 0.6949 0.6949 0.6949 0.6948 0.6949 0.6948 0.4110 0.6388 0.6243 0.6388 0.6104 0.6050 0.4836 0.4905

Framework versions

  • PEFT 0.17.1
  • Transformers 4.56.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for KonradBRG/bert-lora-for-author-profiling

Adapter
(40)
this model