phrase_bank_v1

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2072
  • Accuracy: 0.9685
  • Precision: 0.9570
  • Recall: 0.9458
  • F1: 0.9479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 18 0.6233 0.7402 0.4449 0.5471 0.4866
No log 2.0 36 0.6032 0.7795 0.7077 0.6534 0.6198
No log 3.0 54 0.4921 0.7874 0.8024 0.6014 0.5935
No log 4.0 72 0.2028 0.9370 0.9361 0.9046 0.9182
No log 5.0 90 0.1545 0.9606 0.9573 0.9335 0.9430
No log 6.0 108 0.1373 0.9606 0.9514 0.9335 0.9396
No log 7.0 126 0.1093 0.9685 0.9570 0.9458 0.9479
No log 8.0 144 0.1646 0.9606 0.9514 0.9335 0.9396
No log 9.0 162 0.2421 0.9606 0.9514 0.9335 0.9396
No log 10.0 180 0.2072 0.9685 0.9570 0.9458 0.9479

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.1.1
  • Tokenizers 0.22.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kudod/phrase_bank_v1

Finetuned
(732)
this model