mt5-small-ukrainian-style-editor
This model is a fine-tuned version of google/mt5-small designed for stylistic editing of Ukrainian texts. It transforms raw or non-native phrasing into improved, stylistically polished Ukrainian, making it suitable for academic, journalistic, or official contexts..
It achieves the following results on the evaluation set:
- Loss: 0.2027
- Score: 41.4271
- Counts: [18650, 13567, 10522, 7822]
- Totals: [25663, 22534, 19416, 16463]
- Precisions: [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831]
- Bp: 0.7151
- Sys Len: 25663
- Ref Len: 34270
๐ง Model Description
This model was trained using a hybrid approach, combining:
- Dictionary-based style correction (e.g., calque removal).
- Fine-tuning on paragraph-aligned pairs of original and stylistically improved Ukrainian text.
The base model is multilingual T5 (mT5), allowing flexible encoder-decoder performance and cross-lingual generalization, adapted to the specifics of Ukrainian syntax and style.
๐ Intended Uses & Limitations
โ Intended Uses
- Stylistic enhancement of Ukrainian texts.
- Detection and correction of translationese or poor phrasing.
- Text improvement for public communication, official writing, and journalism.
โ ๏ธ Limitations
- Not intended for grammar correction or spell-checking.
- May occasionally preserve non-stylistic errors if present in training data.
- Performance is best on formal or semi-formal text.
๐ Training and Evaluation Data
Training used a custom dataset uploaded to Hugging Face: Kulynych/training_data.
Each entry contains:
input_text
: raw Ukrainian text (possibly containing calques or awkward phrasing).target_text
: human-edited version of the same paragraph, stylistically improved.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Score | Counts | Totals | Precisions | Bp | Sys Len | Ref Len |
---|---|---|---|---|---|---|---|---|---|---|
0.2888 | 1.0 | 3129 | 0.2095 | 41.1095 | [18518, 13411, 10404, 7739] | [25905, 22776, 19652, 16594] | [71.48426944605289, 58.88215665612926, 52.94117647058823, 46.6373387971556] | 0.7240 | 25905 | 34270 |
0.2325 | 2.0 | 6258 | 0.2027 | 41.4271 | [18650, 13567, 10522, 7822] | [25663, 22534, 19416, 16463] | [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831] | 0.7151 | 25663 | 34270 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
Evaluation Metric
- SacreBLEU score: 41.43 (after 2nd epoch)
- Validation Loss: 0.2027
Epoch | Step | Val Loss | SacreBLEU | Bp | Precisions (%) |
---|---|---|---|---|---|
1 | 3129 | 0.2095 | 41.11 | 0.7240 | [71.48, 58.88, 52.94, 46.63] |
2 | 6258 | 0.2027 | 41.43 | 0.7151 | [72.67, 60.20, 54.19, 47.51] |
๐ป How to Use
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor")
model = AutoModelForSeq2SeqLM.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor")
text = "ะะณัะดะฝะพ ะท ะดะฐะฝะธะผะธ, ะบะพััั ะผะธ ะพััะธะผะฐะปะธ, ัะธััะฐััั ะฟะพะณัััะธะปะฐัั."
inputs = tokenizer(text, return_tensors="pt")
output = model.generate(**inputs, max_length=192)
print(tokenizer.decode(output[0], skip_special_tokens=True))
- Downloads last month
- 41
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kulynych/mt5-small-ukrainian-style-editor
Base model
google/mt5-small