Uploaded model
- Developed by: Kuniho
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
ベンチマーク出力方法
ライブラリーをinstall
>>> pip install -U bitsandbytes
>>> pip install -U transformers
>>> pip install -U accelerate
>>> pip install -U datasets
>>> from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
>>> import torch
>>> from tqdm import tqdm
>>> import json
>>> HF_token = "xxxxx" # 自身のHagging Face tokenを入力
>>> model_name = "Kuniho/kh_llm-jp-3-13b-it"
>>> bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
>>> # Load Model
>>> model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
データセットの読み込み
>>> datasets = []
>>> with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
推論
>>> results = []
>>> for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答:
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
結果をjsonに保存
>>> import re
>>> model_name = re.sub(".*/", "", model_name)
>>> with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Kuniho/kh_llm-jp-3-13b-it
Base model
llm-jp/llm-jp-3-13b