BantuBERTa-vmw-finetuned
This model is a fine-tuned version of dsfsi/BantuBERTa on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3269
- F1: 0.1633
- Roc Auc: 0.5507
- Accuracy: 0.4729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4095 | 1.0 | 66 | 0.3112 | 0.0 | 0.5 | 0.4612 |
0.2908 | 2.0 | 132 | 0.2903 | 0.0 | 0.5 | 0.4612 |
0.284 | 3.0 | 198 | 0.2882 | 0.0 | 0.5 | 0.4612 |
0.2958 | 4.0 | 264 | 0.2879 | 0.0 | 0.5 | 0.4612 |
0.2749 | 5.0 | 330 | 0.2851 | 0.0139 | 0.5033 | 0.4651 |
0.265 | 6.0 | 396 | 0.2868 | 0.0574 | 0.5173 | 0.4729 |
0.2281 | 7.0 | 462 | 0.2802 | 0.1073 | 0.5338 | 0.4845 |
0.1963 | 8.0 | 528 | 0.2876 | 0.1109 | 0.5353 | 0.4651 |
0.1749 | 9.0 | 594 | 0.3040 | 0.0966 | 0.5282 | 0.4496 |
0.1534 | 10.0 | 660 | 0.3046 | 0.1322 | 0.5396 | 0.4612 |
0.1336 | 11.0 | 726 | 0.3129 | 0.1602 | 0.5473 | 0.4690 |
0.1194 | 12.0 | 792 | 0.3222 | 0.1287 | 0.5372 | 0.4612 |
0.1106 | 13.0 | 858 | 0.3269 | 0.1633 | 0.5507 | 0.4729 |
0.1004 | 14.0 | 924 | 0.3296 | 0.1269 | 0.5360 | 0.4496 |
0.091 | 15.0 | 990 | 0.3364 | 0.1612 | 0.5513 | 0.4690 |
0.0855 | 16.0 | 1056 | 0.3347 | 0.1570 | 0.5472 | 0.4690 |
0.079 | 17.0 | 1122 | 0.3399 | 0.1513 | 0.5440 | 0.4574 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.