Model save
Browse files- README.md +81 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-4.0
|
4 |
+
base_model: dsfsi/BantuBERTa
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: BantuBERTa-vmw-finetuned
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BantuBERTa-vmw-finetuned
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dsfsi/BantuBERTa](https://huggingface.co/dsfsi/BantuBERTa) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3399
|
23 |
+
- F1: 0.1513
|
24 |
+
- Roc Auc: 0.5440
|
25 |
+
- Accuracy: 0.4574
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.4095 | 1.0 | 66 | 0.3112 | 0.0 | 0.5 | 0.4612 |
|
58 |
+
| 0.2908 | 2.0 | 132 | 0.2903 | 0.0 | 0.5 | 0.4612 |
|
59 |
+
| 0.284 | 3.0 | 198 | 0.2882 | 0.0 | 0.5 | 0.4612 |
|
60 |
+
| 0.2958 | 4.0 | 264 | 0.2879 | 0.0 | 0.5 | 0.4612 |
|
61 |
+
| 0.2749 | 5.0 | 330 | 0.2851 | 0.0139 | 0.5033 | 0.4651 |
|
62 |
+
| 0.265 | 6.0 | 396 | 0.2868 | 0.0574 | 0.5173 | 0.4729 |
|
63 |
+
| 0.2281 | 7.0 | 462 | 0.2802 | 0.1073 | 0.5338 | 0.4845 |
|
64 |
+
| 0.1963 | 8.0 | 528 | 0.2876 | 0.1109 | 0.5353 | 0.4651 |
|
65 |
+
| 0.1749 | 9.0 | 594 | 0.3040 | 0.0966 | 0.5282 | 0.4496 |
|
66 |
+
| 0.1534 | 10.0 | 660 | 0.3046 | 0.1322 | 0.5396 | 0.4612 |
|
67 |
+
| 0.1336 | 11.0 | 726 | 0.3129 | 0.1602 | 0.5473 | 0.4690 |
|
68 |
+
| 0.1194 | 12.0 | 792 | 0.3222 | 0.1287 | 0.5372 | 0.4612 |
|
69 |
+
| 0.1106 | 13.0 | 858 | 0.3269 | 0.1633 | 0.5507 | 0.4729 |
|
70 |
+
| 0.1004 | 14.0 | 924 | 0.3296 | 0.1269 | 0.5360 | 0.4496 |
|
71 |
+
| 0.091 | 15.0 | 990 | 0.3364 | 0.1612 | 0.5513 | 0.4690 |
|
72 |
+
| 0.0855 | 16.0 | 1056 | 0.3347 | 0.1570 | 0.5472 | 0.4690 |
|
73 |
+
| 0.079 | 17.0 | 1122 | 0.3399 | 0.1513 | 0.5440 | 0.4574 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.47.0
|
79 |
+
- Pytorch 2.5.1+cu121
|
80 |
+
- Datasets 3.2.0
|
81 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 445837336
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1af209f43efe5e171efa8ae8809294a8039d58768dfc2c1e7e33ea77afab3d
|
3 |
size 445837336
|