CS221-xlm-roberta-base-pcm-noaug-finetuned-pcm-tapt
This model is a fine-tuned version of Kuongan/xlm-roberta-base-pcm-noaug on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2091
- F1: 0.7769
- Roc Auc: 0.8613
- Accuracy: 0.6479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.2224 | 1.0 | 156 | 0.1953 | 0.7745 | 0.8588 | 0.6777 |
0.1974 | 2.0 | 312 | 0.1967 | 0.7749 | 0.8545 | 0.6664 |
0.1575 | 3.0 | 468 | 0.1881 | 0.7761 | 0.8457 | 0.6704 |
0.1433 | 4.0 | 624 | 0.2091 | 0.7769 | 0.8613 | 0.6479 |
0.1267 | 5.0 | 780 | 0.2183 | 0.7290 | 0.8258 | 0.6568 |
0.1008 | 6.0 | 936 | 0.2294 | 0.7725 | 0.8645 | 0.6174 |
0.0829 | 7.0 | 1092 | 0.2224 | 0.7687 | 0.8483 | 0.6543 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kuongan/CS221-xlm-roberta-base-pcm-noaug-finetuned-pcm-tapt
Base model
FacebookAI/xlm-roberta-base
Finetuned
Kuongan/xlm-roberta-base-pcm-noaug