CS221-xlm-roberta-base-tat-finetuned-finetuned-tat-tapt
This model is a fine-tuned version of Kuongan/xlm-roberta-base-tat-finetuned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1374
- F1: 0.7942
- Roc Auc: 0.8706
- Accuracy: 0.7790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.1896 | 1.0 | 103 | 0.1266 | 0.6707 | 0.8114 | 0.7989 |
0.1767 | 2.0 | 206 | 0.1455 | 0.6767 | 0.8181 | 0.7572 |
0.1686 | 3.0 | 309 | 0.1226 | 0.6737 | 0.8110 | 0.7899 |
0.1288 | 4.0 | 412 | 0.1274 | 0.6986 | 0.8338 | 0.7880 |
0.1087 | 5.0 | 515 | 0.1457 | 0.7083 | 0.8259 | 0.7554 |
0.0915 | 6.0 | 618 | 0.1433 | 0.7618 | 0.8607 | 0.7899 |
0.067 | 7.0 | 721 | 0.1374 | 0.7942 | 0.8706 | 0.7790 |
0.0654 | 8.0 | 824 | 0.1273 | 0.7815 | 0.8857 | 0.7953 |
0.0409 | 9.0 | 927 | 0.1500 | 0.7629 | 0.8673 | 0.7844 |
0.0486 | 10.0 | 1030 | 0.1357 | 0.7914 | 0.8824 | 0.8007 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 25
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kuongan/CS221-xlm-roberta-base-tat-finetuned-finetuned-tat-tapt
Base model
FacebookAI/xlm-roberta-base
Finetuned
Kuongan/xlm-roberta-base-tat-finetuned