Kuongan's picture
Training completed!
c97f07b verified
|
raw
history blame
3.16 kB
metadata
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-xlnet-large-cased-finetuned-augmentation
    results: []

CS221-xlnet-large-cased-finetuned-augmentation

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2505
  • F1: 0.9280
  • Roc Auc: 0.9437
  • Accuracy: 0.8749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5536 1.0 360 0.5670 0.1475 0.5 0.1425
0.4339 2.0 720 0.4273 0.5310 0.6840 0.3391
0.3421 3.0 1080 0.3298 0.7397 0.8147 0.4927
0.2113 4.0 1440 0.2764 0.8083 0.8578 0.6338
0.1513 5.0 1800 0.2489 0.8476 0.8869 0.6810
0.1097 6.0 2160 0.2260 0.8777 0.9021 0.7665
0.0735 7.0 2520 0.2448 0.8996 0.9200 0.8026
0.0411 8.0 2880 0.2378 0.9129 0.9315 0.8214
0.0468 9.0 3240 0.2554 0.8990 0.9316 0.8235
0.0253 10.0 3600 0.2470 0.9084 0.9306 0.8464
0.021 11.0 3960 0.2412 0.9183 0.9388 0.8582
0.0125 12.0 4320 0.2440 0.9217 0.9383 0.8631
0.002 13.0 4680 0.2552 0.9232 0.9391 0.8673
0.0038 14.0 5040 0.2489 0.9237 0.9412 0.8666
0.0064 15.0 5400 0.2522 0.9234 0.9407 0.8659
0.0017 16.0 5760 0.2466 0.9254 0.9410 0.8728
0.0009 17.0 6120 0.2505 0.9280 0.9437 0.8749
0.0013 18.0 6480 0.2529 0.9272 0.9420 0.8749
0.002 19.0 6840 0.2530 0.9258 0.9412 0.8721
0.001 20.0 7200 0.2530 0.9258 0.9412 0.8721

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0