Kuongan's picture
Training completed!
c907339 verified
metadata
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-xlnet-large-cased-finetuned-augmentation
    results: []

CS221-xlnet-large-cased-finetuned-augmentation

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5488
  • F1: 0.7778
  • Roc Auc: 0.8358
  • Accuracy: 0.5486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5737 1.0 165 0.5256 0.2747 0.5539 0.2067
0.433 2.0 330 0.3995 0.5828 0.7099 0.4027
0.3391 3.0 495 0.3516 0.7006 0.7727 0.4514
0.2481 4.0 660 0.3694 0.7110 0.7813 0.5015
0.1585 5.0 825 0.4033 0.7513 0.8097 0.4985
0.1021 6.0 990 0.4539 0.7405 0.7987 0.4878
0.0813 7.0 1155 0.4708 0.7430 0.7991 0.4985
0.0512 8.0 1320 0.5113 0.7554 0.8162 0.5426
0.0287 9.0 1485 0.5563 0.7598 0.8223 0.5289
0.0129 10.0 1650 0.5488 0.7778 0.8358 0.5486
0.0144 11.0 1815 0.5748 0.7595 0.8157 0.5471
0.0094 12.0 1980 0.6090 0.7557 0.8152 0.5532
0.0057 13.0 2145 0.6303 0.7592 0.8167 0.5395

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0