Kuongan's picture
Training completed!
e3d4fcf verified
metadata
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-xlnet-large-cased-finetuned-semeval
    results: []

CS221-xlnet-large-cased-finetuned-semeval

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6440
  • F1: 0.7846
  • Roc Auc: 0.8368
  • Accuracy: 0.4892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.577 1.0 139 0.5832 0.4593 0.6262 0.1516
0.5274 2.0 278 0.5171 0.4943 0.6506 0.1805
0.429 3.0 417 0.3725 0.7256 0.7927 0.4188
0.3146 4.0 556 0.3735 0.7468 0.8089 0.4567
0.2192 5.0 695 0.3846 0.7625 0.8216 0.4729
0.167 6.0 834 0.4137 0.7541 0.8126 0.4585
0.0954 7.0 973 0.4414 0.7672 0.8222 0.4783
0.0668 8.0 1112 0.5105 0.7696 0.8271 0.4747
0.0299 9.0 1251 0.5573 0.7688 0.8263 0.4531
0.0258 10.0 1390 0.5910 0.7793 0.8366 0.4783
0.0132 11.0 1529 0.6008 0.7741 0.8298 0.4801
0.0082 12.0 1668 0.6108 0.7780 0.8340 0.4711
0.0054 13.0 1807 0.6386 0.7806 0.8356 0.4711
0.0033 14.0 1946 0.6429 0.7775 0.8325 0.4747
0.0025 15.0 2085 0.6464 0.7763 0.8314 0.4675
0.0028 16.0 2224 0.6440 0.7846 0.8368 0.4892
0.0029 17.0 2363 0.6455 0.7816 0.8344 0.4856
0.0029 18.0 2502 0.6496 0.7777 0.8316 0.4765
0.0023 19.0 2641 0.6500 0.7812 0.8347 0.4819

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0