xlm-roberta-base-ptbr-finetuned
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3305
- F1: 0.2957
- Roc Auc: 0.6147
- Accuracy: 0.48
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3954 | 1.0 | 109 | 0.3836 | 0.0 | 0.5 | 0.23 |
0.3868 | 2.0 | 218 | 0.3428 | 0.1905 | 0.5658 | 0.415 |
0.3374 | 3.0 | 327 | 0.3169 | 0.2236 | 0.5866 | 0.48 |
0.2931 | 4.0 | 436 | 0.3217 | 0.2091 | 0.5789 | 0.425 |
0.2601 | 5.0 | 545 | 0.3166 | 0.2752 | 0.6008 | 0.485 |
0.2381 | 6.0 | 654 | 0.3305 | 0.2957 | 0.6147 | 0.48 |
0.1987 | 7.0 | 763 | 0.3561 | 0.2761 | 0.6045 | 0.455 |
0.1863 | 8.0 | 872 | 0.3538 | 0.2905 | 0.6121 | 0.465 |
0.1335 | 9.0 | 981 | 0.3741 | 0.2710 | 0.6029 | 0.445 |
0.1343 | 10.0 | 1090 | 0.3873 | 0.2850 | 0.6096 | 0.46 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.