File size: 17,461 Bytes
4391d5f 53681dd eff15e9 53681dd eff15e9 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 5a7ede1 53681dd 185e8f0 53681dd 185e8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
---
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: video-text-to-text
tags:
- multimodal
---
# Kwai Keye-VL
<div align="center">
<img src="asset/keye_logo_2.png" width="100%" alt="Kwai Keye-VL Logo">
</div>
<font size=3><div align='center' >
[[π Home Page](https://kwai-keye.github.io/)]
[[π Technique Report](https://arxiv.org/abs/2509.01563)]
[[π Keye-VL-8B-Preview](https://huggingface.co/Kwai-Keye/Keye-VL-8B-Preview) ]
[[π Keye-VL-1.5-8B](https://huggingface.co/Kwai-Keye/Keye-VL-1_5-8B/) ]
[[π Demo](https://huggingface.co/spaces/Kwai-Keye/Keye-VL-8B-Preview)]
</div></font>
## π₯ News
* **`2025.08.28`** π We are excited to introduce **Kwai Keye-VL-1.5**, a more powerful version! By incorporating innovative `Slow-Fast Video Encoding strategy`, `new LongCoT Cold-Start data pipeline`, and `advanced RL training strategies`, Keye-VL-1.5 reaches new heights in video understanding, image comprehension, and reasoning capabilities. Plus, it now supports an extended context length of up to **128k** tokens for handling longer conversations and complex tasks. Stay tuned for more groundbreaking innovations!
* **`2025.07.08`** π Keye-VL is supported by [swift](https://github.com/modelscope/ms-swift) and [vLLM](https://github.com/vllm-project/vllm). Feel free to use it without hesitation!
* **`2025.07.03`** π We are excited to announce the release of our comprehensive technical report! You can read it now at [arxiv](https://arxiv.org/abs/2507.01949).
* **`2025.06.26`** π We are very proud to launch **Kwai Keye-VL**, a cutting-edge multimodal large language model meticulously crafted by the **Kwai Keye Team** at [Kuaishou](https://www.kuaishou.com/). As a cornerstone AI product within Kuaishou's advanced technology ecosystem, Keye excels in video understanding, visual perception, and reasoning tasks, setting new benchmarks in performance. Our team is working tirelessly to push the boundaries of what's possible, so stay tuned for more exciting updates!
<div align="center">
<img src="asset/teaser.png" width="100%" alt="Kwai Keye-VL Performance">
</div>
## Contents <!-- omit in toc -->
- [Kwai Keye-VL](#kwai-keye-vl)
- [π₯ News](#-news)
- [π Quick Start](#-quick-start)
- [Preprocess and Inference](#preprocess-and-inference)
- [Install](#install)
- [Keye-VL-1.5 Inference](#keye-vl-15-inference)
- [Deployment](#deployment)
- [Install](#install-1)
- [Offline Inference](#offline-inference)
- [Online Serving](#online-serving)
- [Evaluation](#evaluation)
- [π Architecture and Training Strategy](#-architecture-and-training-strategy)
- [π Pre-Train](#-pre-train)
- [π Post-Train](#-post-train)
- [π Experimental Results](#-experimental-results)
- [βοΈ Citation](#οΈ-citation)
- [Acknowledgement](#acknowledgement)
## π Quick Start
### Preprocess and Inference
See [keye-vl-utils/README.md](keye-vl-utils/README.md) for details. ```Keye-vl-utils``` contains a set of helper functions for processing and integrating visual language information with Keye Series Model.
#### Install
```bash
pip install --upgrade keye-vl-utils==1.5.2 -i https://pypi.org/simple
```
#### Keye-VL-1.5 Inference
```python
from transformers import AutoModel, AutoTokenizer, AutoProcessor
from keye_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model_path = "Kwai-Keye/Keye-VL-1_5-8B"
model = AutoModel.from_pretrained(
model_path,
torch_dtype="auto",
trust_remote_code=True,
# flash_attention_2 is recommended for better performance
attn_implementation="flash_attention_2",
).eval()
model.to("cuda")
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# Image Inputs
## Non-Thinking Mode
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg",
},
{"type": "text", "text": "Describe this image./no_think"},
],
}
]
## Auto-Thinking Mode
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
## Thinking mode
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg",
},
{"type": "text", "text": "Describe this image./think"},
],
}
]
# The default range for the number of visual tokens per image in the model is 4-20480.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 32-1280, to balance performance and cost.
# min_pixels = 32 * 28 * 28
# max_pixels = 1280 * 28 * 28
# e.g.,
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg",
"min_pixels": 32 * 28 * 28,
"max_pixels": 1280 * 28 * 28
},
{"type": "text", "text": "Describe this image./think"},
],
}
]
# Video inputs
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "http://s2-11508.kwimgs.com/kos/nlav11508/MLLM/videos_caption/98312843263.mp4",
},
{"type": "text", "text": "Describe this video."},
],
}
]
# You can also set fps and max_frames to restrict total frames send to model.
# e.g.,
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "http://s2-11508.kwimgs.com/kos/nlav11508/MLLM/videos_caption/98312843263.mp4",
"fps": 2.0,
"max_frames": 1024
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Text inputs
messages = [
{
"role": "user",
"content": "Hello, Keye",
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, mm_processor_kwargs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
**mm_processor_kwargs
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
#### Deployment
- We recommend using vLLM for fast deployment and inference.
##### Install
```bash
pip install keye-vl-utils==1.5.2 "vllm>=0.9.2"
```
##### Offline Inference
```bash
# refer to https://github.com/QwenLM/Qwen2.5-VL?tab=readme-ov-file#inference-locally
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from keye_vl_utils import process_vision_info
model_path = "/home/keye/Keye-VL-1_5-8B"
llm = LLM(
model=model_path,
limit_mm_per_prompt={"image": 10, "video": 10},
trust_remote_code=True,
)
sampling_params = SamplingParams(
temperature=0.3,
max_tokens=256,
)
# image
image_messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg",
},
{"type": "text", "text": "Describe this image./think"},
],
},
]
# video
video_messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "http://s2-11508.kwimgs.com/kos/nlav11508/MLLM/videos_caption/98312843263.mp4",
},
{"type": "text", "text": "Describe this video./think"},
],
},
]
# Here we use video messages as a demonstration
messages = video_messages
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
prompt = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(
messages, return_video_kwargs=True
)
mm_data = {}
if image_inputs is not None:
mm_data["image"] = image_inputs
if video_inputs is not None:
mm_data["video"] = video_inputs
llm_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
# FPS will be returned in video_kwargs
"mm_processor_kwargs": video_kwargs,
}
outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
##### Online Serving
- Serve
```bash
vllm serve \
Kwai-Keye/Keye-VL-1_5-8B \
--tensor-parallel-size 8 \
--enable-prefix-caching \
--gpu-memory-utilization 0.8 \
--host 0.0.0.0 \
--port 8000 \
--trust-remote-code
```
- Openai Chat Completion Client
```python
import base64
import numpy as np
from PIL import Image
from io import BytesIO
from openai import OpenAI
from keye_vl_utils import process_vision_info
import requests
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# image url
image_messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://s1-11508.kwimgs.com/kos/nlav11508/mllm_all/ziran_jiafeimao_11.jpg"
},
},
{"type": "text", "text": "Describe this image./think"},
],
},
]
chat_response = client.chat.completions.create(
model="Kwai-Keye/Keye-VL-1_5-8B",
messages=image_messages,
)
print("Chat response:", chat_response)
# image base64-encoded
import base64
image_path = "/path/to/local/image.png"
with open(image_path, "rb") as f:
encoded_image = base64.b64encode(f.read())
encoded_image_text = encoded_image.decode("utf-8")
image_messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image;base64,{encoded_image_text}"
},
},
{"type": "text", "text": "Describe this image./think"},
],
},
]
chat_response = client.chat.completions.create(
model="Kwai-Keye/Keye-VL-1_5-8B",
messages=image_messages,
)
print("Chat response:", chat_response)
# video, refer to https://github.com/QwenLM/Qwen2.5-VL?tab=readme-ov-file#start-an-openai-api-service
video_messages = [
{"role": "user", "content": [
{"type": "video", "video": "http://s2-11508.kwimgs.com/kos/nlav11508/MLLM/videos_caption/98312843263.mp4"},
{"type": "text", "text": "Describe this video./think"}]
},
]
def prepare_message_for_vllm(content_messages):
vllm_messages, fps_list = [], []
for message in content_messages:
message_content_list = message["content"]
if not isinstance(message_content_list, list):
vllm_messages.append(message)
continue
new_content_list = []
for part_message in message_content_list:
if 'video' in part_message:
video_message = [{'content': [part_message]}]
image_inputs, video_inputs, video_kwargs = process_vision_info(video_message, return_video_kwargs=True)
assert video_inputs is not None, "video_inputs should not be None"
video_input = (video_inputs.pop()).permute(0, 2, 3, 1).numpy().astype(np.uint8)
fps_list.extend(video_kwargs.get('fps', []))
# encode image with base64
base64_frames = []
for frame in video_input:
img = Image.fromarray(frame)
output_buffer = BytesIO()
img.save(output_buffer, format="jpeg")
byte_data = output_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
base64_frames.append(base64_str)
part_message = {
"type": "video_url",
"video_url": {"url": f"data:video/jpeg;base64,{','.join(base64_frames)}"}
}
new_content_list.append(part_message)
message["content"] = new_content_list
vllm_messages.append(message)
return vllm_messages, {'fps': fps_list}
video_messages, video_kwargs = prepare_message_for_vllm(video_messages)
chat_response = client.chat.completions.create(
model="Kwai-Keye/Keye-VL-1_5-8B",
messages=video_messages,
max_tokens=128,
extra_body={
"mm_processor_kwargs": video_kwargs
}
)
print("Chat response:", chat_response)
```
### Evaluation
See [evaluation/KC-MMBench/README.md](evaluation/KC-MMBench/README.md) for details.
## π Architecture and Training Strategy
<div align="center">
<img src="asset/architecture.png" width="100%" alt="Kwai Keye Architecture">
<i> The Kwai Keye-VL-1.5 model architecture is based on the Qwen3-8B language model and incorporates a vision encoder initialized from the open-source SigLIP. It supports SlowFast video encoding and native dynamic resolution, preserving the original aspect ratio of images by dividing each into a 14x14 patch sequence. A simple MLP layer then maps and merges the visual tokens. The model uses 3D RoPE for unified processing of text, image, and video information.</i>
</div>
### π Pre-Train
<div align="center">
<img src="asset/slowfast.png" width="100%" alt="Kwai Keye Pretraining">
<i> A SlowFast video encoding demonstration: the Slow processes a smaller number of frames at higher resolution, while the Fast handles more frames at lower resolution.</i>
</div>
### π Post-Train
<div align="center">
<img src="https://github.com/user-attachments/assets/2c529a7d-7e18-4c3f-bafc-cb29fed8ff3b" width="100%" alt="Post-Training Pipeline">
<br>
<i>The post-training process includes non-reasoning stage and reasoning stage. The non-reasoning stage is composed of SFT and MPO training. The reasoning stage consists of three key steps: CoT Cold Start (we construct a five-step construction pipeline to generate high-quality CoT Cold-Start Dataset and apply model merging to refine model performance), General RL (we concentrate on improving Keye-VL-1.5's reasoning ability, applying GSPO, we propose progressive hint sampling to fully take advantage of hard problems and iteratively improve the cold-start and general RL model), and Alignment RL (improving Keye-VL-1.5's instruction following, format adherence, preference alignment and RAG ability with our reward system, we construct instruction following data, reasoning data and RAG data for RL training in this step).</i>
</div>
## π Experimental Results
<div align="center">
<img src="https://github.com/user-attachments/assets/76771d48-cd95-4782-b592-71f94160d9f1" width="100%" alt="Kwai Keye-VL-1.5 Performance">
</div>
1. Keye-VL-1.5-8B establishes itself with powerful, state-of-the-art perceptual abilities that are competitive with leading models.
2. Keye-VL-1.5-8B demonstrates exceptional proficiency in video understanding. Across a comprehensive suite of authoritative public video benchmarks, including Video-MME, Video-MMMU, TempCompass, LongVideoBench, and MMVU, the model's performance significantly surpasses that of other top-tier models of a comparable size.
3. In evaluation sets that require complex logical reasoning and mathematical problem-solving, such as WeMath, MathVerse, and LogicVista, Kwai Keye-VL-1.5-8B displays a strong performance curve. This highlights its advanced capacity for logical deduction and solving complex quantitative problems.
## βοΈ Citation
If you find our work helpful for your research, please consider citing our work.
```bibtex
@misc{Keye-VL-1.5,
title={Kwai Keye-VL-1.5 Technical Report},
author={Kwai Keye Team},
year={2025},
eprint={TBD},
}
@misc{kwaikeyeteam2025kwaikeyevltechnicalreport,
title={Kwai Keye-VL Technical Report},
author={Kwai Keye Team},
year={2025},
eprint={2507.01949},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.01949},
}
```
## Acknowledgement
Kwai Keye-VL is developed based on the codebases of the following projects: [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384), [Qwen3](https://github.com/QwenLM/Qwen3), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit). We sincerely thank these projects for their outstanding work.
|