Guru
Collection
A collection of Guru datasets and models.
•
5 items
•
Updated
This repository contains the Guru-7B (base Qwen2.5-7B) model presented in Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective.
The leaderboard is evaluated with our evaluation code. The parameters we set in evaluation for all models: temperature=1.0, top_p=0.7.
Domain | Benchmark | GURU 7B | General Reasoner 7B | ORZ 7Bâ—‡ | SimpleRL 7B | GURU 32B | ORZ 32Bâ—‡ | SimpleRL 32B |
---|---|---|---|---|---|---|---|---|
Math | AIME24 (avg@32) | 17.50 | 17.08 | 16.25 | 15.60 | 34.89 | 47.50 | 27.20 |
MATH500 | 77.25 | 70.40 | 80.80 | 87.00 | 86.00 | 89.80 | 89.60 | |
Code | LiveCodeBench (avg@4) | 16.49 | 8.51 | 5.47 | 6.72 | 29.30 | 22.04 | 19.80 |
HumanEval (avg@4) | 82.62 | 61.12 | 67.38 | 58.08 | 90.85 | 84.30 | 81.25 | |
MBPP | 70.00 | 39.80 | 48.40 | 49.60 | 78.80 | 74.20 | 76.75 | |
Science | GPQA-diamond (avg@4) | 40.78 | 38.64 | 37.63 | 35.98 | 50.63 | 55.67 | 46.46 |
SuperGPQA | 31.80 | 30.64 | 29.75 | 27.29 | 43.60 | 46.05 | 37.73 | |
Logic | ARC-AGI (avg@4) | 3.31 | 0.75 | 0.00 | 0.50 | 7.63 | 2.31 | 5.25 |
Zebra Puzzle (avg@4) | 39.40 | 0.07 | 1.00 | 0.62 | 45.21 | 0.54 | 1.16 | |
Simulation | CodeI/O (avg@4) | 15.63 | 7.13 | 5.13 | 6.63 | 12.63 | 3.75 | 9.75 |
CruxEval-I | 61.72 | 63.63 | 69.38 | 56.25 | 80.63 | 71.13 | 72.63 | |
CruxEval-O | 71.28 | 56.50 | 65.88 | 58.31 | 88.75 | 82.38 | 67.75 | |
Tabular | FinQA | 34.70 | 34.33 | 37.60 | 35.10 | 46.14 | 45.20 | 45.41 |
HiTab | 74.20 | 54.40 | 54.10 | 50.40 | 82.00 | 63.30 | 69.00 | |
MultiHiertt (avg@4) | 44.94 | 31.62 | 38.10 | 37.57 | 55.28 | 52.83 | 52.83 | |
Others | IFEval | 35.81 | 39.56 | 32.72 | 36.69 | 55.45 | 38.26 | 55.27 |
LiveBench | 18.57 | 19.76 | 12.64 | 15.20 | 34.30 | 28.78 | 28.33 | |
Average Score | 43.29 | 33.76 | 35.42 | 33.97 | 54.24 | 47.53 | 46.25 |
Example usage:
from transformers import AutoTokenizer, AutoModelForCausalLM
model = "LLM360/Guru-7B"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model, device_map="auto", torch_dtype="auto")
messages = [{"role": "user", "content": "What is reinforcement learning?"}]
prompt = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(prompt, max_new_tokens=256, temperature=1.0, top_p=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Please refer to the paper for more details.