TED_CLM_gpt2_tedlium_bigger_lr

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8755
  • Accuracy: 0.5540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.004
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20000
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0351 0.62 3000 2.2280 0.4798
1.9186 1.24 6000 2.0994 0.5074
1.88 1.86 9000 2.0577 0.5142
1.8505 2.49 12000 2.0113 0.5223
1.8284 3.11 15000 1.9957 0.5279
1.8182 3.73 18000 1.9891 0.5305
1.8061 4.35 21000 1.9617 0.5371
1.7969 4.97 24000 1.9413 0.5369
2.0383 5.59 27000 2.1697 0.4894
1.7668 6.22 30000 1.9366 0.5397
1.7556 6.84 33000 1.9303 0.5402
1.7492 7.46 36000 1.9140 0.5432
1.7409 8.08 39000 1.9088 0.5445
1.7317 8.7 42000 1.9030 0.5455
1.7218 9.32 45000 1.9040 0.5496
1.7261 9.94 48000 1.8952 0.5506
1.7175 10.57 51000 1.8959 0.5498
1.708 11.19 54000 1.8909 0.5510
1.7056 11.81 57000 1.8917 0.5518
1.6971 12.43 60000 1.8879 0.5523
1.6986 13.05 63000 1.8790 0.5532
1.6972 13.67 66000 1.8799 0.5526
1.6858 14.29 69000 1.8782 0.5543
1.6875 14.92 72000 1.8755 0.5540

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support