|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cointegrated/rut5-base-absum |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: rut5-base-absum-finetuned-summ |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# rut5-base-absum-finetuned-summ |
|
|
|
This model is a fine-tuned version of [cointegrated/rut5-base-absum](https://huggingface.co/cointegrated/rut5-base-absum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6039 |
|
- Rouge1: 97.0122 |
|
- Rouge2: 94.5148 |
|
- Rougel: 97.0189 |
|
- Rougelsum: 96.9668 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 1.0 | 15 | 0.9642 | 88.9988 | 70.6048 | 88.8684 | 88.9803 | |
|
| No log | 2.0 | 30 | 0.7765 | 94.6938 | 86.9198 | 94.7219 | 94.6778 | |
|
| No log | 3.0 | 45 | 0.6995 | 96.1002 | 90.9986 | 96.058 | 96.058 | |
|
| No log | 4.0 | 60 | 0.6596 | 96.0421 | 92.2644 | 96.067 | 96.0107 | |
|
| No log | 5.0 | 75 | 0.6294 | 96.5868 | 93.2489 | 96.5836 | 96.5625 | |
|
| No log | 6.0 | 90 | 0.6172 | 96.4605 | 92.827 | 96.4538 | 96.4071 | |
|
| No log | 7.0 | 105 | 0.6091 | 97.0122 | 94.5148 | 97.0189 | 96.9668 | |
|
| 1.0079 | 8.0 | 120 | 0.6039 | 97.0122 | 94.5148 | 97.0189 | 96.9668 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.53.0 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |
|
|