You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

BERT_B01

This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6902
  • Precision: 0.6636
  • Recall: 0.6946
  • F1: 0.6788
  • Accuracy: 0.8776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0749 1.0 47 0.9390 0.4203 0.3480 0.3807 0.7831
0.6411 2.0 94 0.6110 0.5948 0.5392 0.5657 0.8452
0.4786 3.0 141 0.5279 0.6784 0.6121 0.6435 0.8630
0.3573 4.0 188 0.4972 0.6462 0.6382 0.6422 0.8691
0.2824 5.0 235 0.4868 0.6339 0.6479 0.6408 0.8689
0.2434 6.0 282 0.4970 0.6490 0.6561 0.6525 0.8715
0.1854 7.0 329 0.5004 0.6578 0.6795 0.6685 0.8721
0.1336 8.0 376 0.5091 0.6508 0.6768 0.6635 0.8736
0.1186 9.0 423 0.5437 0.6340 0.6768 0.6547 0.8739
0.103 10.0 470 0.5482 0.6570 0.6823 0.6694 0.8771
0.0799 11.0 517 0.5620 0.6444 0.6781 0.6609 0.8752
0.1045 12.0 564 0.5812 0.6557 0.6864 0.6707 0.8760
0.0562 13.0 611 0.6009 0.6667 0.6850 0.6757 0.8780
0.0637 14.0 658 0.5937 0.6707 0.6946 0.6824 0.8780
0.0657 15.0 705 0.6017 0.6788 0.6946 0.6866 0.8789
0.0371 16.0 752 0.6227 0.6858 0.6905 0.6881 0.8776
0.0389 17.0 799 0.6476 0.6499 0.6919 0.6702 0.8767
0.0461 18.0 846 0.6667 0.6556 0.7043 0.6790 0.8786
0.0377 19.0 893 0.6515 0.6788 0.6919 0.6853 0.8793
0.0364 20.0 940 0.6480 0.6791 0.7015 0.6901 0.8784
0.0383 21.0 987 0.6646 0.6719 0.7070 0.6890 0.8802
0.0173 22.0 1034 0.6724 0.6750 0.7029 0.6887 0.8793
0.0613 23.0 1081 0.6779 0.6580 0.6988 0.6778 0.8778
0.0578 24.0 1128 0.6847 0.6592 0.6864 0.6725 0.8767
0.0201 25.0 1175 0.6714 0.6706 0.7001 0.6851 0.8791
0.022 26.0 1222 0.6874 0.6667 0.6878 0.6770 0.8782
0.0298 27.0 1269 0.6926 0.6675 0.6960 0.6815 0.8789
0.03 28.0 1316 0.6895 0.6662 0.6974 0.6815 0.8784
0.0216 29.0 1363 0.6888 0.6636 0.6946 0.6788 0.8780
0.0236 30.0 1410 0.6902 0.6636 0.6946 0.6788 0.8776

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LazzeKappa/BERT_B01

Finetuned
(233)
this model