SentenceTransformer based on BAAI/bge-small-en
This is a sentence-transformers model finetuned from BAAI/bge-small-en. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Can the 3051s transmitter be ordered with a G½ conduit entry size?',
'Info for 8700m\n|2 (50)|ASME 600 DERAT. So / RF|8705 020C6|223|223|221|224|223| |165|132|122|126|92| |\n|2 (50)|Din Pn40 So / RF|8705 OzocH|200|200|198|201|200|200|165|132|122|126|102| |\n|2 (50)|AS2129 TABLE D, So / RF| |8705|200| |198|201|200| |50|32|122|126|90|\n|2 (50)|AS2129 TABLE E, So / RF|8705 020CL|200| |198|201|200| |50|132|122|126|90| |\n|2 (50)|JIS B220 10K, So / RF|8705 02CP|200| |198|201|200| |155|132|122|126|96| |\n|2 (50)|JIS B220 20K, So / RF|8705 O2OCR|200| |198|201|200| |55|132|122|126|96| |\n|2 (50)|JIS B220 40K, So / RF|8705 O20CI|223| |22|224|223| |165|32|122|126|105| |\n|2 (50)|AS4087 Pni6_ Sq / RF|8705 020CU|200| |198|201|200| |150|132|122|126|90| |\n|2 (50)|AS4087 Pn2| , So / RF|8705 020CW|200| |198|201|200| |165|132|122|126|103| |\n|2 (50)|AS4087 Pn35 , So / RF|8705 O20cy|200| |198|201|200| |65|132|122|126|103| |\n|2.5 (65)|ASME 150 So / RF|8705 025C1|199| |197| |78|160|136|140|105|12| | |\n|2.5 (65)|ASME 300 So / RF|8705 025c3|199| |197| |19|60|136|140|105|15| | |',
'Info for 8700m\n# Process connections\n\n|ASME B16.5|Class 150 and Class 300: ½ inch to 24 inch (15 mm to 600 mm)|\n|---|---|\n| |Class 600: ½ inch to 24 inch (15 mm to 600 mm)(1)|\n| |Class 900: 1 inch to 12 inch (25 mm to 300 mm)(2)|\n| |Class 1500: 1½ inch to 12 inch (40 mm to 300 mm)(2)|\n| |1½ inch to 6 inch (40 mm to 150 mm)(2)|\n|ASME B16.47|Class 150: 30 inch to 36 inch (750 mm to 900 mm)|\n| |Class 300: 30 inch to 36 inch (750 mm to 900 mm)|\n|AWWA C207|Class D: 30 inch and 36 inch (750 mm and 900 mm)|\n|MSS SP44|Class 150: 30 inch to 36 inch (750 mm to 900 mm)|\n|EN 1092-1|PN10: 200 mm to 900 mm (8 inch to 36 inch)|\n| |PN16: 100 mm to 900 mm (4 inch to 36 inch)|\n| |PN25: 200 mm to 900 mm (8 inch to 36 inch)|\n| |PN40: 15 mm to 900 mm (½ inch to 36 inch)|\n|AS2129|Table D and Table E: 15 mm to 900 mm (½ inch to 36 inch)|\n|AS4087|PN16, PN21, PN35: 50 mm to 600 mm (2 inch to 24 inch)|\n|JIS B2220|10K, 20K, 40K: 15 mm to 200 mm (½ inch to 8 inch)|',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
valid
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8612 |
spearman_cosine | 0.7357 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 41,760 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 12 tokens
- mean: 20.93 tokens
- max: 46 tokens
- min: 16 tokens
- mean: 304.51 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.25
- max: 1.0
- Samples:
sentence_0 sentence_1 label How much does the 8705 240CE model weigh in the DIN PNI6 So / RF setup?
Info for 3051s
# Process connection sizeCode What type of instrument flange is used for the Rosemount 3051S_T with F11 code?
Info for 3051s
# Electrical connections
½–14 NPT, G½, and M20 × 1½ conduit. HART® interface connections fixed to terminal block for Output code A and X.
# Process connections
Coplanar sensor module (Rosemount 3051S_C, 3051SMV, 3051SF, 3051SAM_ _G or A)Standard I need info on the 8700m sensor with ASME -1500 WN / RTJ, can you help?
Info for 8700m
(350) JIS B2200 20k, So / RF - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | valid_spearman_cosine |
---|---|---|---|
0.2496 | 163 | - | 0.7010 |
0.4992 | 326 | - | 0.7209 |
0.7489 | 489 | - | 0.7259 |
0.7657 | 500 | 3.9185 | - |
0.9985 | 652 | - | 0.7252 |
1.0 | 653 | - | 0.7253 |
1.2481 | 815 | - | 0.7285 |
1.4977 | 978 | - | 0.7321 |
1.5314 | 1000 | 3.7874 | - |
1.7473 | 1141 | - | 0.7300 |
1.9969 | 1304 | - | 0.7333 |
2.0 | 1306 | - | 0.7332 |
2.2466 | 1467 | - | 0.7304 |
2.2971 | 1500 | 3.7241 | - |
2.4962 | 1630 | - | 0.7293 |
2.7458 | 1793 | - | 0.7357 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for LeiPricingManager/02262025_fine-tuned-bge-small-optimized
Base model
BAAI/bge-small-enEvaluation results
- Pearson Cosine on validself-reported0.861
- Spearman Cosine on validself-reported0.736