whisper-small-fula
This model is a fine-tuned version of openai/whisper-small on the LAfricaMobile/fulfulde dataset. It achieves the following results on the evaluation set:
- Loss: 0.3445
- Wer: 0.2610
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8644 | 0.3437 | 500 | 0.7433 | 0.5713 |
0.6177 | 0.6874 | 1000 | 0.5597 | 0.4540 |
0.5026 | 1.0309 | 1500 | 0.4869 | 0.4128 |
0.5111 | 1.3746 | 2000 | 0.4482 | 0.4109 |
0.4172 | 1.7183 | 2500 | 0.4173 | 0.3507 |
0.3695 | 2.0619 | 3000 | 0.3985 | 0.3167 |
0.366 | 2.4056 | 3500 | 0.3836 | 0.2965 |
0.3372 | 2.7493 | 4000 | 0.3676 | 0.3009 |
0.3059 | 3.0928 | 4500 | 0.3578 | 0.2956 |
0.305 | 3.4365 | 5000 | 0.3511 | 0.2822 |
0.2882 | 3.7802 | 5500 | 0.3445 | 0.2610 |
0.2528 | 4.1237 | 6000 | 0.3560 | 0.3077 |
0.2757 | 4.4674 | 6500 | 0.3558 | 0.2969 |
0.2559 | 4.8111 | 7000 | 0.3556 | 0.2965 |
0.2558 | 5.1547 | 7500 | 0.3553 | 0.2968 |
0.251 | 5.4984 | 8000 | 0.3546 | 0.3072 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Leonel-Maia/whisper-small-fula
Base model
openai/whisper-small