Leonel-Maia's picture
End of training
84d172e verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Leonel-Maia/fongbe-splitted
metrics:
  - wer
model-index:
  - name: whisper-small-splitted
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Leonel-Maia/fongbe-splitted
          type: Leonel-Maia/fongbe-splitted
        metrics:
          - name: Wer
            type: wer
            value: 0.11257288805358778

whisper-small-splitted

This model is a fine-tuned version of openai/whisper-small on the Leonel-Maia/fongbe-splitted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1084
  • Wer: 0.1126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1324 2.1094 500 0.1909 0.3307
0.0383 4.2187 1000 0.1153 0.1131
0.0184 6.3281 1500 0.1084 0.1126
0.0098 8.4374 2000 0.1122 0.1014
0.0076 10.5468 2500 0.1101 0.0966
0.0075 12.6562 3000 0.1156 0.0992

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1