lex-cross-encoder-mbert-10neg

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4360
  • Precision: 0.6020
  • Recall: 0.8593
  • F2: 0.7917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F2
0.4572 1.0 2317 0.4705 0.4735 0.8620 0.7405
0.4283 2.0 4634 0.4515 0.4774 0.9124 0.7718
0.4115 3.0 6951 0.4485 0.4796 0.9201 0.7773
0.4021 4.0 9268 0.4387 0.5217 0.9068 0.7902
0.3918 5.0 11585 0.4466 0.6111 0.8242 0.7705
0.3879 6.0 13902 0.4337 0.5783 0.8767 0.7947
0.383 7.0 16219 0.4336 0.5633 0.8907 0.7980
0.3781 8.0 18536 0.4354 0.5929 0.8660 0.7930
0.3767 9.0 20853 0.4353 0.5980 0.8636 0.7931
0.3712 10.0 23170 0.4360 0.6020 0.8593 0.7917

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.6.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for LexcentraAI/lex-cross-encoder-mbert-10neg

Finetuned
(734)
this model