File size: 2,429 Bytes
6bd70d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: lex-cross-encoder-mbert-10neg
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lex-cross-encoder-mbert-10neg

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4360
- Precision: 0.6020
- Recall: 0.8593
- F2: 0.7917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F2     |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.4572        | 1.0   | 2317  | 0.4705          | 0.4735    | 0.8620 | 0.7405 |
| 0.4283        | 2.0   | 4634  | 0.4515          | 0.4774    | 0.9124 | 0.7718 |
| 0.4115        | 3.0   | 6951  | 0.4485          | 0.4796    | 0.9201 | 0.7773 |
| 0.4021        | 4.0   | 9268  | 0.4387          | 0.5217    | 0.9068 | 0.7902 |
| 0.3918        | 5.0   | 11585 | 0.4466          | 0.6111    | 0.8242 | 0.7705 |
| 0.3879        | 6.0   | 13902 | 0.4337          | 0.5783    | 0.8767 | 0.7947 |
| 0.383         | 7.0   | 16219 | 0.4336          | 0.5633    | 0.8907 | 0.7980 |
| 0.3781        | 8.0   | 18536 | 0.4354          | 0.5929    | 0.8660 | 0.7930 |
| 0.3767        | 9.0   | 20853 | 0.4353          | 0.5980    | 0.8636 | 0.7931 |
| 0.3712        | 10.0  | 23170 | 0.4360          | 0.6020    | 0.8593 | 0.7917 |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.15.2